These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33907191)
1. Automatic synchronisation of the cell cycle in budding yeast through closed-loop feedback control. Perrino G; Napolitano S; Galdi F; La Regina A; Fiore D; Giuliano T; di Bernardo M; di Bernardo D Nat Commun; 2021 Apr; 12(1):2452. PubMed ID: 33907191 [TBL] [Abstract][Full Text] [Related]
2. Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast. Litsios A; Huberts DHEW; Terpstra HM; Guerra P; Schmidt A; Buczak K; Papagiannakis A; Rovetta M; Hekelaar J; Hubmann G; Exterkate M; Milias-Argeitis A; Heinemann M Nat Cell Biol; 2019 Nov; 21(11):1382-1392. PubMed ID: 31685990 [TBL] [Abstract][Full Text] [Related]
3. A novel septin-associated protein, Syp1p, is required for normal cell cycle-dependent septin cytoskeleton dynamics in yeast. Qiu W; Neo SP; Yu X; Cai M Genetics; 2008 Nov; 180(3):1445-57. PubMed ID: 18791237 [TBL] [Abstract][Full Text] [Related]
4. Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches. Zhang T; Schmierer B; Novák B Open Biol; 2011 Nov; 1(3):110009. PubMed ID: 22645649 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle control of septin ring dynamics in the budding yeast. Cid VCJ; Adamiková L; Sánchez M; Molina MA; Nombela C Microbiology (Reading); 2001 Jun; 147(Pt 6):1437-1450. PubMed ID: 11390675 [TBL] [Abstract][Full Text] [Related]
7. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Shi L; Tu BP Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7318-23. PubMed ID: 23589851 [TBL] [Abstract][Full Text] [Related]
8. The G1 cyclin Cln3p controls vacuolar biogenesis in Saccharomyces cerevisiae. Han BK; Aramayo R; Polymenis M Genetics; 2003 Oct; 165(2):467-76. PubMed ID: 14573462 [TBL] [Abstract][Full Text] [Related]
9. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast. Chen Y; Zhao G; Zahumensky J; Honey S; Futcher B Mol Cell; 2020 Apr; 78(2):359-370.e6. PubMed ID: 32246903 [TBL] [Abstract][Full Text] [Related]
10. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Moffat J; Andrews B Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790 [TBL] [Abstract][Full Text] [Related]
11. ARL1 and membrane traffic in Saccharomyces cerevisiae. Rosenwald AG; Rhodes MA; Van Valkenburgh H; Palanivel V; Chapman G; Boman A; Zhang CJ; Kahn RA Yeast; 2002 Sep; 19(12):1039-56. PubMed ID: 12210899 [TBL] [Abstract][Full Text] [Related]
12. A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2. Oguz C; Palmisano A; Laomettachit T; Watson LT; Baumann WT; Tyson JJ PLoS One; 2014; 9(5):e96726. PubMed ID: 24816736 [TBL] [Abstract][Full Text] [Related]
13. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Pitoniak A; Birkaya B; Dionne HM; Vadaie N; Cullen PJ Mol Biol Cell; 2009 Jul; 20(13):3101-14. PubMed ID: 19439450 [TBL] [Abstract][Full Text] [Related]
14. Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth. Sommer RA; DeWitt JT; Tan R; Kellogg DR Elife; 2021 Oct; 10():. PubMed ID: 34713806 [TBL] [Abstract][Full Text] [Related]
15. Control of yeast filamentous-form growth by modules in an integrated molecular network. Prinz S; Avila-Campillo I; Aldridge C; Srinivasan A; Dimitrov K; Siegel AF; Galitski T Genome Res; 2004 Mar; 14(3):380-90. PubMed ID: 14993204 [TBL] [Abstract][Full Text] [Related]
16. Some facts and thoughts on cell cycle control in yeast. Nasmyth K; Dirick L; Surana U; Amon A; Cvrckova F Cold Spring Harb Symp Quant Biol; 1991; 56():9-20. PubMed ID: 1840270 [No Abstract] [Full Text] [Related]
17. Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Ferrezuelo F; Aldea M; Futcher B Cell Cycle; 2009 Jan; 8(2):239-52. PubMed ID: 19158491 [TBL] [Abstract][Full Text] [Related]
19. Dynamical remodeling of the transcriptome during short-term anaerobiosis in Saccharomyces cerevisiae: differential response and role of Msn2 and/or Msn4 and other factors in galactose and glucose media. Lai LC; Kosorukoff AL; Burke PV; Kwast KE Mol Cell Biol; 2005 May; 25(10):4075-91. PubMed ID: 15870279 [TBL] [Abstract][Full Text] [Related]
20. Illuminating transcription pathways using fluorescent reporter genes and yeast functional genomics. Kainth P; Andrews B Transcription; 2010; 1(2):76-80. PubMed ID: 21326895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]