BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33907890)

  • 1. Recent advances in the application of multiplex genome editing in Saccharomyces cerevisiae.
    Zhang ZX; Wang LR; Xu YS; Jiang WT; Shi TQ; Sun XM; Huang H
    Appl Microbiol Biotechnol; 2021 May; 105(10):3873-3882. PubMed ID: 33907890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in gene editing technologies for Saccharomyces cerevisiae].
    Li H; Liang X; Zhou J
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):950-965. PubMed ID: 33783160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex Genome Engineering Methods for Yeast Cell Factory Development.
    Malcı K; Walls LE; Rios-Solis L
    Front Bioeng Biotechnol; 2020; 8():589468. PubMed ID: 33195154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.
    Shi S; Liang Y; Zhang MM; Ang EL; Zhao H
    Metab Eng; 2016 Jan; 33():19-27. PubMed ID: 26546089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing GDi-CRISPR System for Multi-copy Integration in Saccharomyces cerevisiae.
    Zhang ZX; Wang YZ; Xu YS; Sun XM; Huang H
    Appl Biochem Biotechnol; 2021 Jul; 193(7):2379-2388. PubMed ID: 33660219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.
    Zhang J; Zong W; Hong W; Zhang ZT; Wang Y
    Metab Eng; 2018 May; 47():49-59. PubMed ID: 29530750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
    Mitsui R; Yamada R; Ogino H
    World J Microbiol Biotechnol; 2019 Jul; 35(7):111. PubMed ID: 31280424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple-to-use CRISPR-SpCas9/SaCas9/AsCas12a vector series for genome editing in Saccharomyces cerevisiae.
    Okada S; Doi G; Nakagawa S; Kusumoto E; Ito T
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34739076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Cas9 expression on cell growth and production of natural products in Saccharomyces cerevisiae and optimization of CRISPR-Cas9 editing system].
    Tang H; Cheng YT; Guo J; Bao JC; Huang LQ
    Zhongguo Zhong Yao Za Zhi; 2022 Aug; 47(15):4066-4073. PubMed ID: 36046896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of CRISPR/Cas gene-editing technology in yeast and fungi.
    Liao B; Chen X; Zhou X; Zhou Y; Shi Y; Ye X; Liao M; Zhou Z; Cheng L; Ren B
    Arch Microbiol; 2021 Dec; 204(1):79. PubMed ID: 34954815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome editing systems across yeast species.
    Yang Z; Blenner M
    Curr Opin Biotechnol; 2020 Dec; 66():255-266. PubMed ID: 33011454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Introduced RNA-Only Approach for Plasmid Curing via the CRISPR-Cpf1 System in
    Chen BC; Chen YZ; Lin HY
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CRISPR/Cas9 method to generate heterozygous alleles in Saccharomyces cerevisiae.
    EauClaire SF; Webb CJ
    Yeast; 2019 Oct; 36(10):607-615. PubMed ID: 31301239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.
    Generoso WC; Gottardi M; Oreb M; Boles E
    J Microbiol Methods; 2016 Aug; 127():203-205. PubMed ID: 27327211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A history of genome editing in Saccharomyces cerevisiae.
    Alexander WG
    Yeast; 2018 May; 35(5):355-360. PubMed ID: 29247562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in
    Giersch RM; Finnigan GC
    Yale J Biol Med; 2017 Dec; 90(4):643-651. PubMed ID: 29259528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in Gene Editing and Metabolic Regulation of
    Liang Y; Gao S; Qi X; Valentovich LN; An Y
    ACS Synth Biol; 2024 Feb; 13(2):428-448. PubMed ID: 38326929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.