These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33908202)
1. 3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells. An JH; Song WJ; Li Q; Bhang DH; Youn HY J Vet Sci; 2021 May; 22(3):e25. PubMed ID: 33908202 [TBL] [Abstract][Full Text] [Related]
2. Complex Tumor Spheroids, a Tissue-Mimicking Tumor Model, for Drug Discovery and Precision Medicine. Kaur G; Evans DM; Teicher BA; Coussens NP SLAS Discov; 2021 Dec; 26(10):1298-1314. PubMed ID: 34772287 [TBL] [Abstract][Full Text] [Related]
3. Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines. Pawlak A; Kutkowska J; Obmińska-Mrukowicz B; Rapak A Res Vet Sci; 2017 Oct; 114():518-523. PubMed ID: 28992489 [TBL] [Abstract][Full Text] [Related]
4. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery. Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195 [TBL] [Abstract][Full Text] [Related]
5. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. Osswald A; Hedrich V; Sommergruber W Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021 [TBL] [Abstract][Full Text] [Related]
6. Impact of the spheroid model complexity on drug response. Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901 [TBL] [Abstract][Full Text] [Related]
7. Liquid-based three-dimensional tumor models for cancer research and drug discovery. Ham SL; Joshi R; Thakuri PS; Tavana H Exp Biol Med (Maywood); 2016 May; 241(9):939-54. PubMed ID: 27072562 [TBL] [Abstract][Full Text] [Related]
8. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery. Meier-Hubberten JC; Sanderson MP Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022 [TBL] [Abstract][Full Text] [Related]
9. Development of multidrug resistance in a canine lymphoma cell line. Uozurmi K; Nakaichi M; Yamamoto Y; Une S; Taura Y Res Vet Sci; 2005 Jun; 78(3):217-24. PubMed ID: 15766940 [TBL] [Abstract][Full Text] [Related]
10. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing. Yip D; Cho CH Biochem Biophys Res Commun; 2013 Apr; 433(3):327-32. PubMed ID: 23501105 [TBL] [Abstract][Full Text] [Related]
11. A longitudinal study of ABC transporter expression in canine multicentric lymphoma. Zandvliet M; Teske E; Schrickx JA; Mol JA Vet J; 2015 Aug; 205(2):263-71. PubMed ID: 25475167 [TBL] [Abstract][Full Text] [Related]
12. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma. Zandvliet M; Teske E; Schrickx JA Toxicol In Vitro; 2014 Dec; 28(8):1498-506. PubMed ID: 24975508 [TBL] [Abstract][Full Text] [Related]
13. Cancer-specific apoptosis induction in canine lymphoma cell lines by the endocytosis inhibitor dynasore. Suemura M; Miyata H; Kawamura R; Takahashi S; Igase M; Mizuno T; Ohama T; Shibutani S; Iwata H J Vet Med Sci; 2023 Aug; 85(8):820-827. PubMed ID: 37407446 [TBL] [Abstract][Full Text] [Related]
14. Imatinib enhances the anti-tumour effect of doxorubicin in canine B-cell lymphoma cell line. Chen W; Liu I; Tomiyasu H; Lee J; Cheng C; Liao AT; Liu B; Liu C; Lin C Vet J; 2019 Dec; 254():105398. PubMed ID: 31836165 [TBL] [Abstract][Full Text] [Related]
15. Development and Characterization of 3D Hybrid Spheroids for the Investigation of the Crosstalk Between B-Cell Non-Hodgkin Lymphomas and Mesenchymal Stromal Cells. Duś-Szachniewicz K; Gdesz-Birula K; Rymkiewicz G Onco Targets Ther; 2022; 15():683-697. PubMed ID: 35747403 [TBL] [Abstract][Full Text] [Related]
16. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. Tsai S; McOlash L; Palen K; Johnson B; Duris C; Yang Q; Dwinell MB; Hunt B; Evans DB; Gershan J; James MA BMC Cancer; 2018 Mar; 18(1):335. PubMed ID: 29587663 [TBL] [Abstract][Full Text] [Related]
17. Spheroid-based 3D Cell Cultures Enable Personalized Therapy Testing and Drug Discovery in Head and Neck Cancer. Hagemann J; Jacobi C; Hahn M; Schmid V; Welz C; Schwenk-Zieger S; Stauber R; Baumeister P; Becker S Anticancer Res; 2017 May; 37(5):2201-2210. PubMed ID: 28476783 [TBL] [Abstract][Full Text] [Related]
18. Macrophage induces anti-cancer drug resistance in canine mammary gland tumor spheroid. Lim GH; An JH; Park SM; Youn GH; Oh YI; Seo KW; Youn HY Sci Rep; 2023 Jun; 13(1):10394. PubMed ID: 37369757 [TBL] [Abstract][Full Text] [Related]
19. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Wong CW; Han HW; Tien YW; Hsu SH Biomaterials; 2019 Aug; 213():119202. PubMed ID: 31132644 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of live parameters of the HS-5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia-stroma cross-talk. Podszywalow-Bartnicka P; Kominek A; Wolczyk M; Kolba MD; Swatler J; Piwocka K Cytometry A; 2018 Jul; 93(9):929-940. PubMed ID: 30247803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]