BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33908202)

  • 1. 3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells.
    An JH; Song WJ; Li Q; Bhang DH; Youn HY
    J Vet Sci; 2021 May; 22(3):e25. PubMed ID: 33908202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Tumor Spheroids, a Tissue-Mimicking Tumor Model, for Drug Discovery and Precision Medicine.
    Kaur G; Evans DM; Teicher BA; Coussens NP
    SLAS Discov; 2021 Dec; 26(10):1298-1314. PubMed ID: 34772287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methotrexate induces high level of apoptosis in canine lymphoma/leukemia cell lines.
    Pawlak A; Kutkowska J; Obmińska-Mrukowicz B; Rapak A
    Res Vet Sci; 2017 Oct; 114():518-523. PubMed ID: 28992489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery.
    Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration.
    Osswald A; Hedrich V; Sommergruber W
    Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the spheroid model complexity on drug response.
    Hoffmann OI; Ilmberger C; Magosch S; Joka M; Jauch KW; Mayer B
    J Biotechnol; 2015 Jul; 205():14-23. PubMed ID: 25746901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid-based three-dimensional tumor models for cancer research and drug discovery.
    Ham SL; Joshi R; Thakuri PS; Tavana H
    Exp Biol Med (Maywood); 2016 May; 241(9):939-54. PubMed ID: 27072562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of multidrug resistance in a canine lymphoma cell line.
    Uozurmi K; Nakaichi M; Yamamoto Y; Une S; Taura Y
    Res Vet Sci; 2005 Jun; 78(3):217-24. PubMed ID: 15766940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multicellular 3D heterospheroid model of liver tumor and stromal cells in collagen gel for anti-cancer drug testing.
    Yip D; Cho CH
    Biochem Biophys Res Commun; 2013 Apr; 433(3):327-32. PubMed ID: 23501105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A longitudinal study of ABC transporter expression in canine multicentric lymphoma.
    Zandvliet M; Teske E; Schrickx JA; Mol JA
    Vet J; 2015 Aug; 205(2):263-71. PubMed ID: 25475167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-drug resistance in a canine lymphoid cell line due to increased P-glycoprotein expression, a potential model for drug-resistant canine lymphoma.
    Zandvliet M; Teske E; Schrickx JA
    Toxicol In Vitro; 2014 Dec; 28(8):1498-506. PubMed ID: 24975508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-specific apoptosis induction in canine lymphoma cell lines by the endocytosis inhibitor dynasore.
    Suemura M; Miyata H; Kawamura R; Takahashi S; Igase M; Mizuno T; Ohama T; Shibutani S; Iwata H
    J Vet Med Sci; 2023 Aug; 85(8):820-827. PubMed ID: 37407446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imatinib enhances the anti-tumour effect of doxorubicin in canine B-cell lymphoma cell line.
    Chen W; Liu I; Tomiyasu H; Lee J; Cheng C; Liao AT; Liu B; Liu C; Lin C
    Vet J; 2019 Dec; 254():105398. PubMed ID: 31836165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Characterization of 3D Hybrid Spheroids for the Investigation of the Crosstalk Between B-Cell Non-Hodgkin Lymphomas and Mesenchymal Stromal Cells.
    Duś-Szachniewicz K; Gdesz-Birula K; Rymkiewicz G
    Onco Targets Ther; 2022; 15():683-697. PubMed ID: 35747403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models.
    Tsai S; McOlash L; Palen K; Johnson B; Duris C; Yang Q; Dwinell MB; Hunt B; Evans DB; Gershan J; James MA
    BMC Cancer; 2018 Mar; 18(1):335. PubMed ID: 29587663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spheroid-based 3D Cell Cultures Enable Personalized Therapy Testing and Drug Discovery in Head and Neck Cancer.
    Hagemann J; Jacobi C; Hahn M; Schmid V; Welz C; Schwenk-Zieger S; Stauber R; Baumeister P; Becker S
    Anticancer Res; 2017 May; 37(5):2201-2210. PubMed ID: 28476783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophage induces anti-cancer drug resistance in canine mammary gland tumor spheroid.
    Lim GH; An JH; Park SM; Youn GH; Oh YI; Seo KW; Youn HY
    Sci Rep; 2023 Jun; 13(1):10394. PubMed ID: 37369757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment.
    Wong CW; Han HW; Tien YW; Hsu SH
    Biomaterials; 2019 Aug; 213():119202. PubMed ID: 31132644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of live parameters of the HS-5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia-stroma cross-talk.
    Podszywalow-Bartnicka P; Kominek A; Wolczyk M; Kolba MD; Swatler J; Piwocka K
    Cytometry A; 2018 Jul; 93(9):929-940. PubMed ID: 30247803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.