These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33908433)

  • 1. Understanding the mechanism of the chiral phosphoric acid-catalyzed aza-Cope rearrangement.
    Falcone BN; Grayson MN
    Org Biomol Chem; 2021 Apr; 19(16):3656-3664. PubMed ID: 33908433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insights into a Chiral Phosphoric Acid-Catalyzed Asymmetric Pinacol Rearrangement.
    Falcone BN; Grayson MN; Rodriguez JB
    J Org Chem; 2018 Dec; 83(23):14683-14687. PubMed ID: 30433780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT study of chiral-phosphoric-acid-catalyzed enantioselective Friedel-Crafts reaction of indole with nitroalkene: bifunctionality and substituent effect of phosphoric acid.
    Hirata T; Yamanaka M
    Chem Asian J; 2011 Feb; 6(2):510-6. PubMed ID: 21254429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into a BINOL-derived phosphoric acid-catalyzed asymmetric Pictet-Spengler reaction.
    Overvoorde LM; Grayson MN; Luo Y; Goodman JM
    J Org Chem; 2015 Mar; 80(5):2634-40. PubMed ID: 25654215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying the true origins of selectivity in chiral phosphoric acid catalyzed
    Champagne PA
    Chem Sci; 2021 Dec; 12(47):15662-15672. PubMed ID: 35003597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Aza-Friedel-Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral
    Hatano M; Toh K; Ishihara K
    Org Lett; 2020 Dec; 22(24):9614-9620. PubMed ID: 33295179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis.
    Walden DM; Ogba OM; Johnston RC; Cheong PH
    Acc Chem Res; 2016 Jun; 49(6):1279-91. PubMed ID: 27267964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi(OAc)
    Liu XS; Li Y; Li X
    Org Lett; 2021 Dec; 23(23):9128-9133. PubMed ID: 34779206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective direct aza hetero-Diels-Alder reaction catalyzed by chiral Brønsted acids.
    Liu H; Cun LF; Mi AQ; Jiang YZ; Gong LZ
    Org Lett; 2006 Dec; 8(26):6023-6. PubMed ID: 17165920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral Brønsted acid catalyzed enantioselective Mannich-type reaction.
    Yamanaka M; Itoh J; Fuchibe K; Akiyama T
    J Am Chem Soc; 2007 May; 129(21):6756-64. PubMed ID: 17477527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT study on bifunctional chiral Brønsted acid-catalyzed asymmetric hydrophosphonylation of imines.
    Yamanaka M; Hirata T
    J Org Chem; 2009 May; 74(9):3266-71. PubMed ID: 19388712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity.
    Marcelli T; Hammar P; Himo F
    Chemistry; 2008; 14(28):8562-71. PubMed ID: 18683177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.
    Sunoj RB
    Acc Chem Res; 2016 May; 49(5):1019-28. PubMed ID: 27101013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic Enantioselective Aza-pinacol Rearrangement.
    Yu Y; Li J; Jiang L; Zhang JR; Zu L
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9217-9221. PubMed ID: 28618154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into chirality transfer from double axially chiral phosphoric acid in a synergistic enantioselective intramolecular amination.
    Tribedi S; Sunoj RB
    Chem Sci; 2022 Feb; 13(5):1323-1334. PubMed ID: 35222916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the mechanism of the asymmetric ring-opening aminolysis of 4,4-dimethyl-3,5,8-trioxabicyclo[5.1.0]octane catalyzed by titanium/BINOLate/water system: evidence for the Ti(BINOLate)2-bearing active catalyst entities and the role of water.
    Bao H; Zhou J; Wang Z; Guo Y; You T; Ding K
    J Am Chem Soc; 2008 Aug; 130(31):10116-27. PubMed ID: 18616252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation on the mechanism and stereochemistry of guanidine-catalyzed enantioselective isomerization of 3-alkynoates to allenoates.
    Huang D; Qin S; Hu C
    Org Biomol Chem; 2011 Sep; 9(17):6034-9. PubMed ID: 21766134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and Origin of Enantioselectivity in Nickel-Catalyzed Alkyl-Alkyl Suzuki Coupling Reaction.
    Singh S; Sunoj RB
    J Phys Chem A; 2019 Aug; 123(31):6701-6710. PubMed ID: 31294987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of enantioselectivity in the chiral Brønsted acid catalyzed hydrophosphonylation of imines.
    Shi FQ; Song BA
    Org Biomol Chem; 2009 Apr; 7(7):1292-8. PubMed ID: 19300812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium-Catalyzed Asymmetric Hydrohydroxyalkylation of Butadiene: The Role of the Formyl Hydrogen Bond in Stereochemical Control.
    Grayson MN; Krische MJ; Houk KN
    J Am Chem Soc; 2015 Jul; 137(27):8838-50. PubMed ID: 26107070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.