BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33908448)

  • 1. Smoothed profile method for direct numerical simulations of hydrodynamically interacting particles.
    Yamamoto R; Molina JJ; Nakayama Y
    Soft Matter; 2021 Apr; 17(16):4226-4253. PubMed ID: 33908448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Lees-Edwards periodic boundary conditions for direct numerical simulations of particle dispersions under shear flow.
    Kobayashi H; Yamamoto R
    J Chem Phys; 2011 Feb; 134(6):064110. PubMed ID: 21322664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Navier-Stokes simulation with constraint forces: finite-difference method for particle-laden flows and complex geometries.
    Höfler K; Schwarzer S
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):7146-60. PubMed ID: 11088412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.
    Luo K; Hu C; Wu F; Fan J
    Phys Fluids (1994); 2017 May; 29(5):053301. PubMed ID: 29104418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions.
    Jafari S; Yamamoto R; Rahnama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026702. PubMed ID: 21405925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating (electro)hydrodynamic effects in colloidal dispersions: smoothed profile method.
    Nakayama Y; Kim K; Yamamoto R
    Eur Phys J E Soft Matter; 2008 Aug; 26(4):361-8. PubMed ID: 19230114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained Reversible System for Navier-Stokes Turbulence.
    Jaccod A; Chibbaro S
    Phys Rev Lett; 2021 Nov; 127(19):194501. PubMed ID: 34797128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.
    Richter C; Kotz F; Giselbrecht S; Helmer D; Rapp BE
    Biomed Microdevices; 2016 Jun; 18(3):52. PubMed ID: 27233665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of numerical resolution on the dynamics of finite-size particles with the lattice Boltzmann method.
    Livi C; Di Staso G; Clercx HJH; Toschi F
    Phys Rev E; 2021 Jan; 103(1-1):013303. PubMed ID: 33601495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct numerical simulations of rigid body dispersions. I. Mobility/friction tensors of assemblies of spheres.
    Molina JJ; Yamamoto R
    J Chem Phys; 2013 Dec; 139(23):234105. PubMed ID: 24359350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An SPH Approach for Non-Spherical Particles Immersed in Newtonian Fluids.
    Kijanski N; Krach D; Steeb H
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method.
    Mino Y; Shinto H; Sakai S; Matsuyama H
    Phys Rev E; 2017 Apr; 95(4-1):043309. PubMed ID: 28505823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning acceleration of simulations of Stokesian suspensions.
    Kabacaoğlu G; Biros G
    Phys Rev E; 2019 Jun; 99(6-1):063313. PubMed ID: 31330700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid-structure interaction problems in bio-fluid mechanics: a numerical study of the motion of an isolated particle freely suspended in channel flow.
    Dubini G; Pietrabissa R; Montevecchi FM
    Med Eng Phys; 1995 Dec; 17(8):609-17. PubMed ID: 8564156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersonic turbulent flow simulation using a scalable parallel modal discontinuous Galerkin numerical method.
    Houba T; Dasgupta A; Gopalakrishnan S; Gosse R; Roy S
    Sci Rep; 2019 Oct; 9(1):14442. PubMed ID: 31594959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brownian dynamics of fully confined suspensions of rigid particles without Green's functions.
    Sprinkle B; Donev A; Bhalla APS; Patankar N
    J Chem Phys; 2019 Apr; 150(16):164116. PubMed ID: 31042913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.