BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33908537)

  • 1. A simple and reversible glass-glass bonding method to construct a microfluidic device and its application for cell recovery.
    Funano SI; Ota N; Tanaka Y
    Lab Chip; 2021 Jun; 21(11):2244-2254. PubMed ID: 33908537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biofunctionalized microfluidic structures by low-temperature wax bonding.
    Díaz-González M; Baldi A
    Anal Chem; 2012 Sep; 84(18):7838-44. PubMed ID: 22905798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid-release reversible bonding of PMMA-based microfluidic devices with PBMA coating.
    Li Y; Xu F; Liu J; Zhang Q; Fan Y
    Biomed Microdevices; 2023 Dec; 26(1):6. PubMed ID: 38141082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Glass Microfluidic Devices.
    Culbertson CT; Sibbitts J; Sellens K; Jia S
    Methods Mol Biol; 2019; 1906():1-12. PubMed ID: 30488382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical approach for the optimization of channel integrity in the sealing of shallow microfluidic devices made from cyclic olefin polymer.
    Ganser P; Baum C; Chargin D; Sauer-Budge AF; Sharon A
    Biomed Microdevices; 2018 Feb; 20(2):24. PubMed ID: 29478142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Room-Temperature Bonding Method Based on Electrohydrodynamic Printing.
    Wu W; Yang X; Liu R; Yin Z; Wang DF; Zou H; Hu W; Li L
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1672-1677. PubMed ID: 33404432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional splitting microfluidics.
    Chen Y; Gao W; Zhang C; Zhao Y
    Lab Chip; 2016 Apr; 16(8):1332-9. PubMed ID: 27030216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-assisted glass-to-glass bonding for fabrication of glass microfluidic devices.
    Allen PB; Chiu DT
    Anal Chem; 2008 Sep; 80(18):7153-7. PubMed ID: 18690699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lab-on-a-chip device made by autohesion-bonded polymers.
    Awaja F; Wong TT; Arhatari B
    Biomed Microdevices; 2017 Dec; 20(1):7. PubMed ID: 29256185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pressure-tolerant polymer microfluidic device fabricated by the simultaneous solidification-bonding method and flash chemistry application.
    Ren W; Kim H; Lee HJ; Wang J; Wang H; Kim DP
    Lab Chip; 2014 Nov; 14(21):4263-9. PubMed ID: 25210977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyping of poly(methyl methacrylate) microfluidic systems using solvent imprinting and bonding.
    Sun X; Peeni BA; Yang W; Becerril HA; Woolley AT
    J Chromatogr A; 2007 Aug; 1162(2):162-6. PubMed ID: 17466320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices.
    Kaneda S; Ono K; Fukuba T; Nojima T; Yamamoto T; Fujii T
    Anal Sci; 2012; 28(1):39-44. PubMed ID: 22232222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal assisted ultrasonic bonding method for poly(methyl methacrylate) (PMMA) microfluidic devices.
    Zhang Z; Wang X; Luo Y; He S; Wang L
    Talanta; 2010 Jun; 81(4-5):1331-8. PubMed ID: 20441903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications.
    Bruijns B; Veciana A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31277382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Devices for Characterizing Pore-scale Event Processes in Porous Media for Oil Recovery Applications.
    Vavra ED; Zeng Y; Xiao S; Hirasaki GJ; Biswal SL
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.