These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33908965)

  • 1. Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers.
    Karna D; Pan W; Pandey S; Suzuki Y; Mao H
    Nanoscale; 2021 May; 13(18):8425-8430. PubMed ID: 33908965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of microtubule-generated forces using a DNA origami nanospring.
    Nick Maleki A; Huis In 't Veld PJ; Akhmanova A; Dogterom M; Volkov VA
    J Cell Sci; 2023 Mar; 136(5):. PubMed ID: 36074043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemo-Mechanical Modulation of Cell Motions Using DNA Nanosprings.
    Karna D; Stilgenbauer M; Jonchhe S; Ankai K; Kawamata I; Cui Y; Zheng YR; Suzuki Y; Mao H
    Bioconjug Chem; 2021 Feb; 32(2):311-317. PubMed ID: 33475341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo-mechanical forces modulate the topology dynamics of mesoscale DNA assemblies.
    Karna D; Mano E; Ji J; Kawamata I; Suzuki Y; Mao H
    Nat Commun; 2023 Oct; 14(1):6459. PubMed ID: 37833326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water droplet bouncing on a non-superhydrophobic Si nanospring array.
    Kumar S; Namura K; Suzuki M; Singh JP
    Nanoscale Adv; 2021 Feb; 3(3):668-674. PubMed ID: 36133834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Programmable DNA Origami Nanospring That Reports Dynamics of Single Integrin Motion, Force Magnitude and Force Orientation in Living Cells.
    Matsubara H; Fukunaga H; Saito T; Ikezaki K; Iwaki M
    ACS Nano; 2023 Jul; 17(14):13185-13194. PubMed ID: 37394270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplying optical tweezers force using a micro-lever.
    Lin CL; Lee YH; Lin CT; Liu YJ; Hwang JL; Chung TT; Baldeck PL
    Opt Express; 2011 Oct; 19(21):20604-9. PubMed ID: 21997068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Force Application by a Nanoscale DNA Force Spectrometer.
    Darcy M; Crocker K; Wang Y; Le JV; Mohammadiroozbahani G; Abdelhamid MAS; Craggs TD; Castro CE; Bundschuh R; Poirier MG
    ACS Nano; 2022 Apr; 16(4):5682-5695. PubMed ID: 35385658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elasticity of Semiflexible ZigZag Nanosprings with a Point Magnetic Moment.
    Razbin M; Benetatos P
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfolding the A2 domain of von Willebrand factor with the optical trap.
    Ying J; Ling Y; Westfield LA; Sadler JE; Shao JY
    Biophys J; 2010 Apr; 98(8):1685-93. PubMed ID: 20409490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule mechanochemical sensing using DNA origami nanostructures.
    Koirala D; Shrestha P; Emura T; Hidaka K; Mandal S; Endo M; Sugiyama H; Mao H
    Angew Chem Int Ed Engl; 2014 Jul; 53(31):8137-41. PubMed ID: 24931175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the Hookean Spring Model: Direct Measurement of Optical Forces Through Light Momentum Changes.
    Farré A; Marsà F; Montes-Usategui M
    Methods Mol Biol; 2017; 1486():41-76. PubMed ID: 27844425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretching short sequences of DNA with constant force axial optical tweezers.
    Raghunathan K; Milstein JN; Meiners JC
    J Vis Exp; 2011 Oct; (56):e3405. PubMed ID: 22025209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings.
    Schilke KF; Wilson KL; Cantrell T; Corti G; McIlroy DN; Kelly C
    Biotechnol Prog; 2010; 26(6):1597-605. PubMed ID: 20661927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels.
    Valikhani D; Bolivar JM; Viefhues M; McIlroy DN; Vrouwe EX; Nidetzky B
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34641-34649. PubMed ID: 28921951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. All-optical constant-force laser tweezers.
    Nambiar R; Gajraj A; Meiners JC
    Biophys J; 2004 Sep; 87(3):1972-80. PubMed ID: 15345573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayered Si/Ni nanosprings and their magnetic properties.
    He Y; Fu J; Zhang Y; Zhao Y; Zhang L; Xia A; Cai J
    Small; 2007 Jan; 3(1):153-60. PubMed ID: 17294487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction-free force calibration for magnetic tweezers experiments.
    Ostrofet E; Papini FS; Dulin D
    Sci Rep; 2018 Oct; 8(1):15920. PubMed ID: 30374099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vibration of nanosprings affected by van der Waals interactions.
    Zhao J; Ben S; Yu P
    Proc Math Phys Eng Sci; 2016 Oct; 472(2194):20160242. PubMed ID: 27843397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanospring pressure sensors grown by glancing angle deposition.
    Kesapragada SV; Victor P; Nalamasu O; Gall D
    Nano Lett; 2006 Apr; 6(4):854-7. PubMed ID: 16608297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.