These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33909152)
1. Modeling the aluminum-doped and single vacancy blue phosphorene interactions with molecules: a density functional theory study. Corona-García CA; Martínez-Olguín AC; Sánchez-Ochoa F; Cocoletzi GH J Mol Model; 2021 Apr; 27(5):141. PubMed ID: 33909152 [TBL] [Abstract][Full Text] [Related]
2. In silico modeling: electronic properties of phosphorene monoflakes and biflakes substituted with Al, Si, and S heteroatoms. de la Garza CGV; Rodriguez LDS; Fomine S; Vallejo Narváez WE J Mol Model; 2021 May; 27(6):171. PubMed ID: 34002271 [TBL] [Abstract][Full Text] [Related]
3. Lanthanide atom substitutionally doped blue phosphorene: electronic and magnetic behaviors. Su B; Li N Phys Chem Chem Phys; 2018 Apr; 20(16):11003-11012. PubMed ID: 29629455 [TBL] [Abstract][Full Text] [Related]
4. The Electronic Properties of O-Doped Pure and Sulfur Vacancy-Defect Monolayer WS₂: A First-Principles Study. Wang W; Bai L; Yang C; Fan K; Xie Y; Li M Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29385028 [TBL] [Abstract][Full Text] [Related]
5. Adsorption behavior of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin on pristine and doped black phosphorene: A DFT study. Zhang HP; Hou JL; Wang Y; Tang PP; Zhang YP; Lin XY; Liu C; Tang Y Chemosphere; 2017 Oct; 185():509-517. PubMed ID: 28715762 [TBL] [Abstract][Full Text] [Related]
6. The effects of vacancy and heteroatoms-doping on the stability, electronic and magnetic properties of blue phosphorene. Chen J; Wang Z; Dai X; Xiao J; Long M; Xu L Nanotechnology; 2021 Mar; 32(13):135702. PubMed ID: 33296873 [TBL] [Abstract][Full Text] [Related]
7. First-principles calculations to investigate electronic structures and magnetic regulation of non-metallic elements doped BP with point defects. Wen J; Li N; Shi Q; Wu H; Feng X; Wang C; Zhang J J Mol Graph Model; 2023 Jan; 118():108370. PubMed ID: 36370688 [TBL] [Abstract][Full Text] [Related]
8. Ab initio simulations of black and blue phosphorene functionalised with chemical groups for biomolecule anchoring. Ledur CM; Zanella I; Fagan SB J Mol Model; 2021 Nov; 27(12):349. PubMed ID: 34750682 [TBL] [Abstract][Full Text] [Related]
9. Electronic and magnetic properties of phosphorene tuned by Cl and metallic atom co-doping. Tang Y; Zhou W; Hu C; Pan J; Ouyang F Phys Chem Chem Phys; 2019 Aug; 21(34):18551-18558. PubMed ID: 31410427 [TBL] [Abstract][Full Text] [Related]
10. Electronic and magnetic properties of doped black phosphorene with concentration dependence. Wang K; Wang H; Zhang M; Liu Y; Zhao W Beilstein J Nanotechnol; 2019; 10():993-1001. PubMed ID: 31165026 [TBL] [Abstract][Full Text] [Related]
11. Substitutionally doped phosphorene: electronic properties and gas sensing. Suvansinpan N; Hussain F; Zhang G; Chiu CH; Cai Y; Zhang YW Nanotechnology; 2016 Feb; 27(6):065708. PubMed ID: 26762814 [TBL] [Abstract][Full Text] [Related]
12. The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study. Xiao X; Wang M; Tu J; Jiao S Phys Chem Chem Phys; 2019 Mar; 21(13):7021-7028. PubMed ID: 30869709 [TBL] [Abstract][Full Text] [Related]
13. Interactions of selected organic molecules with a blue phosphorene monolayer: self-assembly, solvent effect, enhanced binding and fixation through coadsorbed gold clusters. Gorkan T; Kadioglu Y; Aktürk E; Ciraci S Phys Chem Chem Phys; 2020 Nov; 22(45):26552-26561. PubMed ID: 33200766 [TBL] [Abstract][Full Text] [Related]
14. Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study. Atashzar SM; Javadian S; Gharibi H; Rezaei Z Nanoscale; 2020 Oct; 12(39):20364-20373. PubMed ID: 33016970 [TBL] [Abstract][Full Text] [Related]
15. Geometric and electronic structures of mono- and di-vacancies in phosphorene. Hu T; Dong J Nanotechnology; 2015 Feb; 26(6):065705. PubMed ID: 25597897 [TBL] [Abstract][Full Text] [Related]
16. Robust indirect band gap and anisotropy of optical absorption in B-doped phosphorene. Wu ZF; Gao PF; Guo L; Kang J; Fang DQ; Zhang Y; Xia MG; Zhang SL; Wen YH Phys Chem Chem Phys; 2017 Dec; 19(47):31796-31803. PubMed ID: 29170767 [TBL] [Abstract][Full Text] [Related]
17. Superior Sensitivity and Optical Response of Blue Phosphorene and Its Doped Systems for Gas Sensing Applications. Safari F; Moradinasab M; Schwalke U; Filipovic L ACS Omega; 2021 Jul; 6(29):18770-18781. PubMed ID: 34337217 [TBL] [Abstract][Full Text] [Related]
18. Thermoelectric transport properties of Ti doped/adsorbed monolayer blue phosphorene. Zhu L; Li B; Yao K Nanotechnology; 2018 Aug; 29(32):325206. PubMed ID: 29786610 [TBL] [Abstract][Full Text] [Related]
19. Adsorption and dissociation of hydrogen molecules over S-vacancies in a Nb-doped MoS Irusta Y; Morón-Navarrete G; González C Nanotechnology; 2024 Jun; 35(35):. PubMed ID: 38806004 [TBL] [Abstract][Full Text] [Related]
20. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption. He Y; Xia F; Shao Z; Zhao J; Jie J J Phys Chem Lett; 2015 Dec; 6(23):4701-10. PubMed ID: 26545168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]