These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33909421)
1. Unraveling the Charge Transport Mechanism in Mechanochemically Processed Hybrid Perovskite Solar Cell. Sadhukhan P; Ghosh D; Sengupta P; Bhattacharyya S; Das S Langmuir; 2021 May; 37(18):5513-5521. PubMed ID: 33909421 [TBL] [Abstract][Full Text] [Related]
2. High-Performance CH Jahandar M; Khan N; Lee HK; Lee SK; Shin WS; Lee JC; Song CE; Moon SJ ACS Appl Mater Interfaces; 2017 Oct; 9(41):35871-35879. PubMed ID: 28948770 [TBL] [Abstract][Full Text] [Related]
3. Interfacial Study To Suppress Charge Carrier Recombination for High Efficiency Perovskite Solar Cells. Adhikari N; Dubey A; Khatiwada D; Mitul AF; Wang Q; Venkatesan S; Iefanova A; Zai J; Qian X; Kumar M; Qiao Q ACS Appl Mater Interfaces; 2015 Dec; 7(48):26445-54. PubMed ID: 26579732 [TBL] [Abstract][Full Text] [Related]
4. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction. Sheikh AD; Munir R; Haque MA; Bera A; Hu W; Shaikh P; Amassian A; Wu T ACS Appl Mater Interfaces; 2017 Oct; 9(40):35018-35029. PubMed ID: 28921949 [TBL] [Abstract][Full Text] [Related]
5. Aluminum Doping Effects on Interface Depletion Width of Low Temperature Processed ZnO Electron Transport Layer-Based Perovskite Solar Cells. Adnan M; Usman M; Ali S; Javed S; Islam M; Akram MA Front Chem; 2021; 9():795291. PubMed ID: 35071185 [TBL] [Abstract][Full Text] [Related]
6. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiO Yin X; Yao Z; Luo Q; Dai X; Zhou Y; Zhang Y; Zhou Y; Luo S; Li J; Wang N; Lin H ACS Appl Mater Interfaces; 2017 Jan; 9(3):2439-2448. PubMed ID: 28030764 [TBL] [Abstract][Full Text] [Related]
7. Contrasting Effects of Organic Chloride Additives on Performance of Direct and Inverted Perovskite Solar Cells. Wang P; Wang H; Ye F; Zhang H; Chen M; Cai J; Li D; Liu D; Wang T ACS Appl Mater Interfaces; 2019 Oct; 11(41):37833-37841. PubMed ID: 31538760 [TBL] [Abstract][Full Text] [Related]
9. Origin of Open-Circuit Voltage Losses in Perovskite Solar Cells Investigated by Surface Photovoltage Measurement. Daboczi M; Hamilton I; Xu S; Luke J; Limbu S; Lee J; McLachlan MA; Lee K; Durrant JR; Baikie ID; Kim JS ACS Appl Mater Interfaces; 2019 Dec; 11(50):46808-46817. PubMed ID: 31738042 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the Trajectory of the Charge Transfer Mechanism and Recombination Process of Hybrid Perovskite Solar Cells. Kirui JK; Olaleru SA; Jhamba L; Wamwangi D; Roro K; Shnier A; Erasmus R; Mwakikunga B Materials (Basel); 2021 May; 14(11):. PubMed ID: 34063740 [TBL] [Abstract][Full Text] [Related]
11. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer. Ameen S; Akhtar MS; Seo HK; Nazeeruddin MK; Shin HS Dalton Trans; 2015 Apr; 44(14):6439-48. PubMed ID: 25747794 [TBL] [Abstract][Full Text] [Related]
12. Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. Yao X; Zheng L; Zhang X; Xu W; Hu W; Gong X ACS Appl Mater Interfaces; 2019 Oct; 11(43):40163-40171. PubMed ID: 31593427 [TBL] [Abstract][Full Text] [Related]
13. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. Li C; Wang F; Xu J; Yao J; Zhang B; Zhang C; Xiao M; Dai S; Li Y; Tan Z Nanoscale; 2015 Jun; 7(21):9771-8. PubMed ID: 25962479 [TBL] [Abstract][Full Text] [Related]
14. Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells. Bin Mohd Yusoff AR; Teridi MA; Jang J Nanoscale; 2016 Mar; 8(12):6328-34. PubMed ID: 26489053 [TBL] [Abstract][Full Text] [Related]
15. High Versatility and Stability of Mechanochemically Synthesized Halide Perovskite Powders for Optoelectronic Devices. Leupold N; Schötz K; Cacovich S; Bauer I; Schultz M; Daubinger M; Kaiser L; Rebai A; Rousset J; Köhler A; Schulz P; Moos R; Panzer F ACS Appl Mater Interfaces; 2019 Aug; 11(33):30259-30268. PubMed ID: 31347356 [TBL] [Abstract][Full Text] [Related]
17. Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. Li F; Yuan J; Ling X; Huang L; Rujisamphan N; Li Y; Chi L; Ma W ACS Appl Mater Interfaces; 2018 Dec; 10(49):42397-42405. PubMed ID: 30422618 [TBL] [Abstract][Full Text] [Related]
18. Efficient and Stable All-Inorganic Niobium-Incorporated CsPbI Patil JV; Mali SS; Hong CK ACS Appl Mater Interfaces; 2020 Jun; 12(24):27176-27183. PubMed ID: 32484326 [TBL] [Abstract][Full Text] [Related]
19. Effects of Illumination Direction on the Surface Potential of CH Yang C; Du P; Dai Z; Li H; Yang X; Chen Q ACS Appl Mater Interfaces; 2019 Apr; 11(15):14044-14050. PubMed ID: 30916539 [TBL] [Abstract][Full Text] [Related]
20. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer. Chang S; Han GD; Weis JG; Park H; Hentz O; Zhao Z; Swager TM; Gradečak S ACS Appl Mater Interfaces; 2016 Apr; 8(13):8511-9. PubMed ID: 26947400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]