BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33909423)

  • 1. Lewis Structures from Open Quantum Systems Natural Orbitals: Real Space Adaptive Natural Density Partitioning.
    Francisco E; Costales A; Menéndez-Herrero M; Pendás ÁM
    J Phys Chem A; 2021 May; 125(18):4013-4025. PubMed ID: 33909423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From quantum fragments to Lewis structures: electron counting in position space.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2018 Aug; 20(33):21368-21380. PubMed ID: 30095829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group.
    Kurashige Y; Chalupský J; Lan TN; Yanai T
    J Chem Phys; 2014 Nov; 141(17):174111. PubMed ID: 25381506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy decompositions according to physical space partitioning schemes: treatments of the density cumulant.
    Alcoba DR; Torre A; Lain L; Bochicchio RC
    J Chem Phys; 2007 Sep; 127(10):104110. PubMed ID: 17867740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local spin and open quantum systems: clarifying misconceptions, unifying approaches.
    Martín Pendás A; Francisco E
    Phys Chem Chem Phys; 2021 Apr; 23(14):8375-8392. PubMed ID: 33876002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Chemical Topology as a Theory of Open Quantum Systems.
    Pendás AM; Francisco E
    J Chem Theory Comput; 2019 Feb; 15(2):1079-1088. PubMed ID: 30576138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-electron images in real space: natural adaptive orbitals.
    Menéndez M; Álvarez Boto R; Francisco E; Martín Pendás Á
    J Comput Chem; 2015 Apr; 36(11):833-43. PubMed ID: 25691432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing paradigms of chemical bonding: adaptive natural density partitioning.
    Zubarev DY; Boldyrev AI
    Phys Chem Chem Phys; 2008 Sep; 10(34):5207-17. PubMed ID: 18728862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Decoding real space bonding descriptors in valence bond language" by A. Martín Pendás and E. Francisco, Phys. Chem. Chem. Phys., 2018, 20, 12368.
    Hiberty PC; Danovich D; Shaik S
    Phys Chem Chem Phys; 2019 Apr; 21(15):8170-8174. PubMed ID: 30912532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.
    Pelzer K; Greenman L; Gidofalvi G; Mazziotti DA
    J Phys Chem A; 2011 Jun; 115(22):5632-40. PubMed ID: 21563790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization.
    Saitow M; Kurashige Y; Yanai T
    J Chem Theory Comput; 2015 Nov; 11(11):5120-31. PubMed ID: 26574310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbital-optimized density cumulant functional theory.
    Sokolov AY; Schaefer HF
    J Chem Phys; 2013 Nov; 139(20):204110. PubMed ID: 24289347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-electron integrations in the quantum theory of atoms in molecules with correlated wave functions.
    Pendás AM; Francisco E; Blanco MA
    J Comput Chem; 2005 Mar; 26(4):344-51. PubMed ID: 15643654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atoms in molecules in real space: a fertile field for chemical bonding.
    Martín Pendás Á; Francisco E; Suárez D; Costales A; Díaz N; Munárriz J; Rocha-Rinza T; Guevara-Vela JM
    Phys Chem Chem Phys; 2023 Apr; 25(15):10231-10262. PubMed ID: 36994471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic transitions of molecules: vibrating Lewis structures.
    Liu Y; Kilby P; Frankcombe TJ; Schmidt TW
    Chem Sci; 2019 Jul; 10(28):6809-6814. PubMed ID: 31391902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy partitioning scheme based on self-consistent method for subsystems: populational space approach.
    De Silva P; Korchowiec J
    J Comput Chem; 2011 Apr; 32(6):1054-64. PubMed ID: 21387333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering aromaticity in porphyrinoids via adaptive natural density partitioning.
    Ivanov AS; Boldyrev AI
    Org Biomol Chem; 2014 Aug; 12(32):6145-50. PubMed ID: 25002069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast density matrix-based partitioning of the energy over the atoms in a molecule consistent with the Hirshfeld-I partitioning of the electron density.
    Vanfleteren D; Ghillemijn D; Van Neck D; Bultinck P; Waroquier M; Ayers PW
    J Comput Chem; 2011 Dec; 32(16):3485-96. PubMed ID: 21919019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-space stochastic density matrix approach for density functional electronic structure.
    Beck TL
    Phys Chem Chem Phys; 2015 Dec; 17(47):31472-9. PubMed ID: 25969148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal natural atomic orbitals form an appropriate one-electron basis for expanding CASSCF wave functions into localized bonding schemes and their weights.
    Bachler V
    J Comput Chem; 2007 Sep; 28(12):2013-9. PubMed ID: 17407092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.