BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33909626)

  • 1. Basement membrane proteins as a substrate for efficient Trypanosoma brucei differentiation in vitro.
    Rojas F; Cayla M; Matthews KR
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009284. PubMed ID: 33909626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms.
    Breidbach T; Ngazoa E; Steverding D
    Exp Parasitol; 2002 Aug; 101(4):223-30. PubMed ID: 12594963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1992 Nov; 56(1):129-40. PubMed ID: 1474991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei.
    Mony BM; MacGregor P; Ivens A; Rojas F; Cowton A; Young J; Horn D; Matthews K
    Nature; 2014 Jan; 505(7485):681-685. PubMed ID: 24336212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis by flow cytometry of DNA synthesis during the life cycle of African trypanosomes.
    Shapiro SZ; Naessens J; Liesegang B; Moloo SK; Magondu J
    Acta Trop; 1984 Dec; 41(4):313-23. PubMed ID: 6152113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligopeptide Signaling through TbGPR89 Drives Trypanosome Quorum Sensing.
    Rojas F; Silvester E; Young J; Milne R; Tettey M; Houston DR; Walkinshaw MD; Pérez-Pi I; Auer M; Denton H; Smith TK; Thompson J; Matthews KR
    Cell; 2019 Jan; 176(1-2):306-317.e16. PubMed ID: 30503212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
    Engstler M; Boshart M
    Genes Dev; 2004 Nov; 18(22):2798-811. PubMed ID: 15545633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation.
    Avila CC; Peacock L; Machado FC; Gibson W; Schenkman S; Carrington M; Castilho BA
    Mol Biochem Parasitol; 2016; 205(1-2):16-21. PubMed ID: 26996431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mild acid stress as a differentiation trigger in Trypanosoma brucei.
    Rolin S; Hancocq-Quertier J; Paturiaux-Hanocq F; Nolan DP; Pays E
    Mol Biochem Parasitol; 1998 Jun; 93(2):251-62. PubMed ID: 9662709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of monomorphic Trypanosoma brucei bloodstream form trypomastigotes into procyclic forms at 37 degrees C by removing glucose from the culture medium.
    Milne KG; Prescott AR; Ferguson MA
    Mol Biochem Parasitol; 1998 Jul; 94(1):99-112. PubMed ID: 9719513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.
    Naguleswaran A; Doiron N; Roditi I
    BMC Genomics; 2018 Apr; 19(1):227. PubMed ID: 29606092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose Signaling Is Important for Nutrient Adaptation during Differentiation of Pleomorphic African Trypanosomes.
    Qiu Y; Milanes JE; Jones JA; Noorai RE; Shankar V; Morris JC
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30381351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in vitro differentiation of pleomorphic Trypanosoma brucei from bloodstream into procyclic form requires neither intermediary nor short-stumpy stage.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1991 Feb; 44(2):261-70. PubMed ID: 2052026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput chemical screening for antivirulence developmental phenotypes in Trypanosoma brucei.
    MacGregor P; Ivens A; Shave S; Collie I; Gray D; Auer M; Matthews KR
    Eukaryot Cell; 2014 Mar; 13(3):412-26. PubMed ID: 24442893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei.
    MacGregor P; Matthews KR
    Nucleic Acids Res; 2012 Sep; 40(16):7705-17. PubMed ID: 22684509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture.
    Vassella E; Boshart M
    Mol Biochem Parasitol; 1996 Nov; 82(1):91-105. PubMed ID: 8943153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential protein synthesis during the life cycle of the protozoan parasite Trypanosoma brucei.
    Shapiro SZ; Kimmel BE
    J Protozool; 1987 Feb; 34(1):58-62. PubMed ID: 3572842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of a culture-adapted mutant bloodstream form of Trypanosoma brucei into the procyclic form results in growth arrest of the cells.
    Mutomba MC; Wang CC
    Mol Biochem Parasitol; 1995 Jun; 72(1-2):215-25. PubMed ID: 8538691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing.
    Briggs EM; Rojas F; McCulloch R; Matthews KR; Otto TD
    Nat Commun; 2021 Sep; 12(1):5268. PubMed ID: 34489460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.