BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33909739)

  • 1. Development and demonstration of functionalized inorganic-organic hybrid copper phosphate nanoflowers for mimicking the oxidative reactions of metalloenzymes by working as a nanozyme.
    Nag R; Rao CP
    J Mater Chem B; 2021 Apr; 9(16):3523-3532. PubMed ID: 33909739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled enzyme-inorganic hybrid nanoflowers and their application to enzyme purification.
    Yu Y; Fei X; Tian J; Xu L; Wang X; Wang Y
    Colloids Surf B Biointerfaces; 2015 Jun; 130():299-304. PubMed ID: 25935264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UV-Vis detection of hydrogen peroxide using horseradish peroxidase/copper phosphate hybrid nanoflowers.
    Yang C; Zhang M; Wang W; Wang Y; Tang J
    Enzyme Microb Technol; 2020 Oct; 140():109620. PubMed ID: 32912680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor.
    Sun J; Ge J; Liu W; Lan M; Zhang H; Wang P; Wang Y; Niu Z
    Nanoscale; 2014 Jan; 6(1):255-62. PubMed ID: 24186239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the activity and stability of sonochemically produced hemoglobin-copper hybrid nanoflowers against some metallic ions, organic solvents, and inhibitors.
    Gulmez C; Altinkaynak C; Ozturkler M; Ozdemir N; Atakisi O
    J Biosci Bioeng; 2021 Oct; 132(4):327-336. PubMed ID: 34334311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers.
    Hao M; Fan G; Zhang Y; Xin Y; Zhang L
    Int J Biol Macromol; 2019 Apr; 126():539-548. PubMed ID: 30593816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitroxide-Modified Protein-Incorporated Nanoflowers with Dual Enzyme-Like Activities.
    Wu Z; Zhang S; Wang X; Cai C; Chen G; Ma L
    Int J Nanomedicine; 2020; 15():263-273. PubMed ID: 32021179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-directed assembly of cobalt phosphate hybrid nanoflowers.
    Kim KH; Jeong JM; Lee SJ; Choi BG; Lee KG
    J Colloid Interface Sci; 2016 Dec; 484():44-50. PubMed ID: 27585999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired synthesis of organic-inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay.
    Tang Q; Zhang L; Tan X; Jiao L; Wei Q; Li H
    Biosens Bioelectron; 2019 May; 133():94-99. PubMed ID: 30913510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of efficient, stable, and reusable copper-phosphotriesterase hybrid nanoflowers for biodegradation of organophosphorus pesticides.
    Chen J; Guo Z; Xin Y; Shi Y; Li Y; Gu Z; Zhong J; Guo X; Zhang L
    Enzyme Microb Technol; 2021 May; 146():109766. PubMed ID: 33812563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol.
    Lin Z; Xiao Y; Yin Y; Hu W; Liu W; Yang H
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10775-82. PubMed ID: 24937087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities.
    Koca FD; Demirezen Yilmaz D; Ertas Onmaz N; Yilmaz E; Ocsoy I
    Biotechnol Lett; 2020 Sep; 42(9):1683-1690. PubMed ID: 32239349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembled organic-inorganic hybrid glucoamylase nanoflowers with enhanced activity and stability.
    Nadar SS; Gawas SD; Rathod VK
    Int J Biol Macromol; 2016 Nov; 92():660-669. PubMed ID: 27343706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative DNA damage of mixed copper(II) complexes with sulfonamides and 1,10-phenanthroline. Crystal structure of [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)2(1,10-phenanthroline)].
    Macías B; García I; Villa MV; Borrás J; González-Alvarez M; Castiñeiras A
    J Inorg Biochem; 2003 Aug; 96(2-3):367-74. PubMed ID: 12888272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.
    He G; Hu W; Li CM
    Colloids Surf B Biointerfaces; 2015 Nov; 135():613-618. PubMed ID: 26322475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-inorganic hybrid nanoflowers.
    Ge J; Lei J; Zare RN
    Nat Nanotechnol; 2012 Jun; 7(7):428-32. PubMed ID: 22659609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions.
    Huang Y; Ran X; Lin Y; Ren J; Qu X
    Chem Commun (Camb); 2015 Mar; 51(21):4386-9. PubMed ID: 25676383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity.
    Wu ZF; Wang Z; Zhang Y; Ma YL; He CY; Li H; Chen L; Huo QS; Wang L; Li ZQ
    Sci Rep; 2016 Mar; 6():22412. PubMed ID: 26926099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Hybrid Nanoflowers Using Glycine and Phenylalanine and Investigation of Their Catalytic Activity.
    Demirbas A; Karsli B; Ocsoy I
    Chem Biodivers; 2023 Aug; 20(8):e202300743. PubMed ID: 37438322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and nuclease activity of mono(1,10-phenanthroline) copper complex.
    Lu LP; Zhu ML; Yang P
    J Inorg Biochem; 2003 May; 95(1):31-6. PubMed ID: 12706539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.