BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33909739)

  • 21. Monoclinic CuO nanoflowers on resin support: recyclable catalyst to obtain perylene compound.
    Basu M; Sinha AK; Pradhan M; Sarkar S; Pal A; Pal T
    Chem Commun (Camb); 2010 Dec; 46(46):8785-7. PubMed ID: 20957269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.
    Altinkaynak C; Kocazorbaz E; Özdemir N; Zihnioglu F
    Int J Biol Macromol; 2018 Apr; 109():205-211. PubMed ID: 29253544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemically Stable and Catalytically Active Coatings Based on Self-Assembly of Protein-Inorganic Nanoflowers on Plasma-Electrolyzed Platform.
    Kamil MP; Ko YG
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39854-39867. PubMed ID: 34387478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
    Li K; Wang J; He Y; Abdulrazaq MA; Yan Y
    J Biotechnol; 2018 Sep; 281():87-98. PubMed ID: 29928917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: A new support for biodiesel synthesis.
    Jiang W; Wang X; Yang J; Han H; Li Q; Tang J
    J Colloid Interface Sci; 2018 Mar; 514():102-107. PubMed ID: 29247821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced DNA nuclease activity of Momordica charantia lectin by biomimetic mineralization as hybrid copper phosphate nanoflowers and as zeolitic imidazole frameworks.
    Polepalli S; Rao CP
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1925-1935. PubMed ID: 36206839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis, structure, and metal complexation behavior of a new type of functionalized chiral phenanthroline derivative.
    Plummer JM; Weitgenant JA; Noll BC; Lauher JW; Wiest O; Helquist P
    J Org Chem; 2008 May; 73(10):3911-4. PubMed ID: 18399656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes.
    Lee HR; Chung M; Kim MI; Ha SH
    Enzyme Microb Technol; 2017 Oct; 105():24-29. PubMed ID: 28756857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic Nanoparticles-Embedded Enzyme-Inorganic Hybrid Nanoflowers with Enhanced Peroxidase-Like Activity and Substrate Channeling for Glucose Biosensing.
    Cheon HJ; Adhikari MD; Chung M; Tran TD; Kim J; Kim MI
    Adv Healthc Mater; 2019 May; 8(9):e1801507. PubMed ID: 30848070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols.
    Le XA; Le TN; Kim MI
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids.
    Kaur H; Bari NK; Garg A; Sinha S
    Int J Biol Macromol; 2021 Apr; 176():106-116. PubMed ID: 33556398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient visible light induced nuclease activity of a ternary mono-1,10-phenanthroline copper(II) complex containing 2-(methylthio)ethylsalicylaldimine.
    Dhar S; Chakravarty AR
    Inorg Chem; 2003 Apr; 42(8):2483-5. PubMed ID: 12691551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of hydrogen peroxide.
    Zhang M; Yang N; Liu Y; Tang J
    Enzyme Microb Technol; 2019 Sep; 128():22-25. PubMed ID: 31186106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable Synthesis of Hemoglobin-Metal Phosphate Organic-Inorganic Hybrid Nanoflowers and Their Applications in Biocatalysis.
    Gao J; Liu H; Tong C
    Inorg Chem; 2023 Aug; 62(34):13812-13823. PubMed ID: 37584534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability.
    Altinkaynak C; Yilmaz I; Koksal Z; Özdemir H; Ocsoy I; Özdemir N
    Int J Biol Macromol; 2016 Mar; 84():402-9. PubMed ID: 26712698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidatively robust monophenolate-copper(II) complexes as potential models of galactose oxidase.
    Gebbink RJ; Watanabe M; Pratt RC; Stack TD
    Chem Commun (Camb); 2003 Mar; (5):630-1. PubMed ID: 12669859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand mediated valence fluctuation of copper in new hybrid materials constructed from decavanadate and a Cu(1,10-phenanthroline) complex.
    Iyer AK; Roy S; Haridasan R; Sarkar S; Peter SC
    Dalton Trans; 2014 Feb; 43(5):2153-60. PubMed ID: 24287701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peroxidase-like Catalytic Activity of Copper-Mediated Protein-Inorganic Hybrid Nanoflowers and Nanofibers of β-Lactoglobulin and α-Lactalbumin: Synthesis, Spectral Characterization, Microscopic Features, and Catalytic Activity.
    Thawari AG; Rao CP
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10392-402. PubMed ID: 27049752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. General Scheme for Oxidative Quenching of a Copper Bis-Phenanthroline Photosensitizer for Light-Driven Hydrogen Production.
    Windisch J; Orazietti M; Hamm P; Alberto R; Probst B
    ChemSusChem; 2016 Jul; 9(13):1719-26. PubMed ID: 27226427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of copper ion incorporated horseradish peroxidase-based hybrid nanoflowers for enhanced catalytic activity and stability.
    Somturk B; Hancer M; Ocsoy I; Özdemir N
    Dalton Trans; 2015 Aug; 44(31):13845-52. PubMed ID: 25940219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.