BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33909739)

  • 41. Different modes of DNA cleavage activity of dihydroxo-bridged dicopper(II) complexes having phenanthroline bases.
    Thomas AM; Nethaji M; Chakravarty AR
    J Inorg Biochem; 2004 Jun; 98(6):1087-94. PubMed ID: 15149819
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ficin-copper hybrid nanoflowers with enhanced peroxidase-like activity for colorimetric detection of biothiols.
    Dang TV; Kim JM; Kim MI
    Mikrochim Acta; 2023 Nov; 190(12):473. PubMed ID: 37987844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metallopeptoids as efficient biomimetic catalysts.
    Prathap KJ; Maayan G
    Chem Commun (Camb); 2015 Jul; 51(55):11096-9. PubMed ID: 26066522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects.
    Lee SW; Cheon SA; Kim MI; Park TJ
    J Nanobiotechnology; 2015 Sep; 13():54. PubMed ID: 26337651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel copper(II) complex with 1,10-phenanthroline and ciprofloxacin.
    Drevensek P; Leban I; Turel I; Giester G; Tillmanns E
    Acta Crystallogr C; 2003 Sep; 59(Pt 9):m376-8. PubMed ID: 12944650
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine.
    Shcharbin D; Halets-Bui I; Abashkin V; Dzmitruk V; Loznikova S; Odabaşı M; Acet Ö; Önal B; Özdemir N; Shcharbina N; Bryszewska M
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110354. PubMed ID: 31325775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hemoglobin-Inorganic Hybrid Nanoflowers with Different Metal Ions as Potential Oxygen Carrying Systems.
    Gulmez C; Altinkaynak C; Turk M; Ozdemir N; Atakisi O
    Chem Biodivers; 2022 Jan; 19(1):e202100683. PubMed ID: 34813152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid Cu(II)-Directed Self Assembly of Esterified Tea Polyphenol Oligomers to Controlled Release Nanoflower Carrier.
    Xu L; Liu S
    J Agric Food Chem; 2021 Jul; 69(27):7725-7732. PubMed ID: 34189913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of large [2]rotaxanes. The relationship between the size of the blocking group and the stability of the rotaxane.
    Saito S; Takahashi E; Wakatsuki K; Inoue K; Orikasa T; Sakai K; Yamasaki R; Mutoh Y; Kasama T
    J Org Chem; 2013 Apr; 78(8):3553-60. PubMed ID: 23541290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.
    Qian L; Yang X
    J Phys Chem B; 2006 Aug; 110(33):16672-8. PubMed ID: 16913805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes.
    Zhan Y; Li H; Chen Y
    J Hazard Mater; 2010 Aug; 180(1-3):481-5. PubMed ID: 20439135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Synthesis and spectroscopic properties of rare earth complexes with o-phthalate and 1,10-phenanthroline].
    Wang XG; Wu HY; Xie DT; Weng SF; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Dec; 21(6):807-10. PubMed ID: 12958901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers].
    Pang J; Jiang M; Liu Y; Li M; Sun J; Wang C; Li X
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4705-4718. PubMed ID: 36593204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Organic-inorganic hybrid liquid crystals: thermotropic mesophases formed by hybridization of liquid-crystalline phosphates and monodispersed alpha-Fe2O3 particles.
    Kanie K; Muramatsu A
    J Am Chem Soc; 2005 Aug; 127(33):11578-9. PubMed ID: 16104715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability.
    Altinkaynak C; Tavlasoglu S; Özdemir N; Ocsoy I
    Enzyme Microb Technol; 2016 Nov; 93-94():105-112. PubMed ID: 27702469
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new application of inorganic sorbent for biomolecules: IMAC practice of Fe
    Serinbaş A; Önal B; Acet Ö; Özdemir N; Dzmitruk V; Halets-Bui I; Shcharbin D; Odabaşı M
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111020. PubMed ID: 32487418
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilization of Bacillus amyloliquefaciens protease "Neutrase" as hybrid enzyme inorganic nanoflower particles: A new biocatalyst for aldol-type and multicomponent reactions.
    Mostafavi M; Mahmoodzadeh K; Habibi Z; Yousefi M; Brask J; Mohammadi M
    Int J Biol Macromol; 2023 Mar; 230():123140. PubMed ID: 36621745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two novel copper-undecaniobates decorated by copper-organic cations [{Cu(H2O)L}2{CuNb11O35H4}]5- (L=1,10-phenanthroline, 2,2'-bipyridine) consisting of plenary and monolacunary Lindqvist-type isopolyniobate fragments.
    Niu JY; Chen G; Zhao JW; Ma PT; Li SZ; Wang JP; Li MX; Bai Y; Ji BS
    Chemistry; 2010 Jun; 16(24):7082-6. PubMed ID: 20468045
    [No Abstract]   [Full Text] [Related]  

  • 60. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.
    Song MJ; Hwang SW; Whang D
    Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.