BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33909976)

  • 1. Improved Discrimination of Disease States Using Proteomics Data with the Updated Aristotle Classifier.
    Hua D; Desaire H
    J Proteome Res; 2021 May; 20(5):2823-2829. PubMed ID: 33909976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data.
    Rudar J; Porter TM; Wright M; Golding GB; Hajibabaei M
    BMC Bioinformatics; 2022 Mar; 23(1):110. PubMed ID: 35361114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically Applicable Deep Learning Algorithm Using Quantitative Proteomic Data.
    Kim H; Kim Y; Han B; Jang JY; Kim Y
    J Proteome Res; 2019 Aug; 18(8):3195-3202. PubMed ID: 31314536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum.
    Agranoff D; Fernandez-Reyes D; Papadopoulos MC; Rojas SA; Herbster M; Loosemore A; Tarelli E; Sheldon J; Schwenk A; Pollok R; Rayner CF; Krishna S
    Lancet; 2006 Sep; 368(9540):1012-21. PubMed ID: 16980117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A topological data analysis based classification method for multiple measurements.
    Riihimäki H; Chachólski W; Theorell J; Hillert J; Ramanujam R
    BMC Bioinformatics; 2020 Jul; 21(1):336. PubMed ID: 32727348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaption of the Aristotle Classifier for Accurately Identifying Highly Similar Bacteria Analyzed by MALDI-TOF MS.
    Desaire H; Hua D
    Anal Chem; 2020 Jan; 92(1):1050-1057. PubMed ID: 31769656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of structural brain MRI and multi-parameter classification for Alzheimer's disease.
    Zhang Y; Liu S
    Biomed Tech (Berl); 2018 Jul; 63(4):427-437. PubMed ID: 28622141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing different algorithms for the course of Alzheimer's disease using machine learning.
    Tang X; Liu J
    Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-Aided Detection of Incidental Lumbar Spine Fractures from Routine Dual-Energy X-Ray Absorptiometry (DEXA) Studies Using a Support Vector Machine (SVM) Classifier.
    Mehta SD; Sebro R
    J Digit Imaging; 2020 Feb; 33(1):204-210. PubMed ID: 31062114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of Alzheimer's Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation.
    Vecchio F; Miraglia F; Alù F; Menna M; Judica E; Cotelli M; Rossini PM
    J Alzheimers Dis; 2020; 75(4):1253-1261. PubMed ID: 32417784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing Children's Fine Motor Skills With Sensor-Augmented Toys: Machine Learning Approach.
    Brons A; de Schipper A; Mironcika S; Toussaint H; Schouten B; Bakkes S; Kröse B
    J Med Internet Res; 2021 Apr; 23(4):e24237. PubMed ID: 33885371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: comparison to a Bayesian classifier.
    Chang Y; Lim J; Kim N; Seo JB; Lynch DA
    Med Phys; 2013 May; 40(5):051912. PubMed ID: 23635282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data.
    Torun FM; Virreira Winter S; Doll S; Riese FM; Vorobyev A; Mueller-Reif JB; Geyer PE; Strauss MT
    J Proteome Res; 2023 Feb; 22(2):359-367. PubMed ID: 36426751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Benign and Malignant Breast Masses on Mammograms for Large Datasets using Core Vector Machines.
    Jebamony J; Jacob D
    Curr Med Imaging; 2020; 16(6):703-710. PubMed ID: 32723242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease.
    Apostolova LG; Hwang KS; Kohannim O; Avila D; Elashoff D; Jack CR; Shaw L; Trojanowski JQ; Weiner MW; Thompson PM;
    Neuroimage Clin; 2014; 4():461-72. PubMed ID: 24634832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.
    Yan KK; Zhao H; Pang H
    BMC Bioinformatics; 2017 Dec; 18(1):539. PubMed ID: 29212468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic figure classification in bioscience literature.
    Kim D; Ramesh BP; Yu H
    J Biomed Inform; 2011 Oct; 44(5):848-58. PubMed ID: 21645638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier.
    Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA
    Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.