These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A Bayesian nonparametric approach for mapping dynamic quantitative traits. Li Z; Sillanpää MJ Genetics; 2013 Aug; 194(4):997-1016. PubMed ID: 23770698 [TBL] [Abstract][Full Text] [Related]
6. Genetic Variant Selection: Learning Across Traits and Sites. Stell L; Sabatti C Genetics; 2016 Feb; 202(2):439-55. PubMed ID: 26680660 [TBL] [Abstract][Full Text] [Related]
7. Multiple-trait quantitative trait locus mapping with incomplete phenotypic data. Guo Z; Nelson JC BMC Genet; 2008 Dec; 9():82. PubMed ID: 19061502 [TBL] [Abstract][Full Text] [Related]
8. Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual. Wang X; Piao Z; Wang B; Yang R; Luo Z Theor Appl Genet; 2009 Feb; 118(3):609-17. PubMed ID: 19020853 [TBL] [Abstract][Full Text] [Related]
9. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny. Zhang YM; Xu S Genetics; 2004 Apr; 166(4):1981-93. PubMed ID: 15126413 [TBL] [Abstract][Full Text] [Related]
10. Bayesian functional mapping of dynamic quantitative traits. Yang R; Li J; Wang X; Zhou X Theor Appl Genet; 2011 Aug; 123(3):483-92. PubMed ID: 21573763 [TBL] [Abstract][Full Text] [Related]
11. Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components. Liu J; Liu Y; Liu X; Deng HW Am J Hum Genet; 2007 Aug; 81(2):304-20. PubMed ID: 17668380 [TBL] [Abstract][Full Text] [Related]
12. The Beavis Effect in Next-Generation Mapping Panels in King EG; Long AD G3 (Bethesda); 2017 Jun; 7(6):1643-1652. PubMed ID: 28592647 [TBL] [Abstract][Full Text] [Related]
13. A Statistical Procedure for Genome-Wide Detection of QTL Hotspots Using Public Databases with Application to Rice. Yang MH; Wu DH; Kao CH G3 (Bethesda); 2019 Feb; 9(2):439-452. PubMed ID: 30541929 [TBL] [Abstract][Full Text] [Related]
14. Bayesian mixture structural equation modelling in multiple-trait QTL mapping. Mi X; Eskridge K; Wang D; Baenziger PS; Campbell BT; Gill KS; Dweikat I Genet Res (Camb); 2010 Jun; 92(3):239-50. PubMed ID: 20667167 [TBL] [Abstract][Full Text] [Related]
15. A decision rule for quantitative trait locus detection under the extended Bayesian LASSO model. Mutshinda CM; Sillanpää MJ Genetics; 2012 Dec; 192(4):1483-91. PubMed ID: 22982577 [TBL] [Abstract][Full Text] [Related]
16. Statistical properties of interval mapping methods on quantitative trait loci location: impact on QTL/eQTL analyses. Wang X; Gilbert H; Moreno C; Filangi O; Elsen JM; Le Roy P BMC Genet; 2012 Apr; 13():29. PubMed ID: 22520935 [TBL] [Abstract][Full Text] [Related]
17. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. Wen X; Pique-Regi R; Luca F PLoS Genet; 2017 Mar; 13(3):e1006646. PubMed ID: 28278150 [TBL] [Abstract][Full Text] [Related]
18. Bayesian mapping of quantitative trait loci for complex binary traits. Yi N; Xu S Genetics; 2000 Jul; 155(3):1391-403. PubMed ID: 10880497 [TBL] [Abstract][Full Text] [Related]
19. QTL fine mapping with Bayes C(π): a simulation study. van den Berg I; Fritz S; Boichard D Genet Sel Evol; 2013 Jun; 45(1):19. PubMed ID: 23782975 [TBL] [Abstract][Full Text] [Related]
20. Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping. Huang A; Xu S; Cai X BMC Genet; 2013 Feb; 14():5. PubMed ID: 23410082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]