BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 33910109)

  • 1. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.
    Wang M; Huang J; Liu M; Zhang D
    Med Image Anal; 2021 Jul; 71():102063. PubMed ID: 33910109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the dynamic brain network representation for autism spectrum disorder diagnosis.
    Cao P; Wen G; Liu X; Yang J; Zaiane OR
    Med Biol Eng Comput; 2022 Jul; 60(7):1897-1913. PubMed ID: 35522357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
    Wee CY; Yang S; Yap PT; Shen D;
    Brain Imaging Behav; 2016 Jun; 10(2):342-56. PubMed ID: 26123390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate graph learning for detecting aberrant connectivity of dynamic brain networks in autism.
    Aggarwal P; Gupta A
    Med Image Anal; 2019 Aug; 56():11-25. PubMed ID: 31150935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic functional connectivity analysis reveals decreased variability of the default-mode network in developing autistic brain.
    He C; Chen Y; Jian T; Chen H; Guo X; Wang J; Wu L; Chen H; Duan X
    Autism Res; 2018 Nov; 11(11):1479-1493. PubMed ID: 30270547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosis of Autism Spectrum Disorders in Young Children Based on Resting-State Functional Magnetic Resonance Imaging Data Using Convolutional Neural Networks.
    Aghdam MA; Sharifi A; Pedram MM
    J Digit Imaging; 2019 Dec; 32(6):899-918. PubMed ID: 30963340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic functional connectivity analysis with temporal convolutional network for attention deficit/hyperactivity disorder identification.
    Wang M; Zhu L; Li X; Pan Y; Li L
    Front Neurosci; 2023; 17():1322967. PubMed ID: 38148943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI.
    Wang N; Yao D; Ma L; Liu M
    Med Image Anal; 2022 Jan; 75():102279. PubMed ID: 34731776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis.
    Huang H; Liu X; Jin Y; Lee SW; Wee CY; Shen D
    Hum Brain Mapp; 2019 Feb; 40(3):833-854. PubMed ID: 30357998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Autism Subtypes Based on Wavelet Coherence of BOLD FMRI Signals Using Convolutional Neural Network.
    Al-Hiyali MI; Yahya N; Faye I; Hussein AF
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosis of Autism Spectrum Disorders Using Temporally Distinct Resting-State Functional Connectivity Networks.
    Wee CY; Yap PT; Shen D
    CNS Neurosci Ther; 2016 Mar; 22(3):212-9. PubMed ID: 26821773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity.
    Haghighat H; Mirzarezaee M; Araabi BN; Khadem A
    Brain Topogr; 2021 May; 34(3):306-322. PubMed ID: 33905003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy.
    Courtiol J; Guye M; Bartolomei F; Petkoski S; Jirsa VK
    J Neurosci; 2020 Jul; 40(29):5572-5588. PubMed ID: 32513827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reveal Consistent Spatial-Temporal Patterns from Dynamic Functional Connectivity for Autism Spectrum Disorder Identification.
    Zhu Y; Zhu X; Zhang H; Gao W; Shen D; Wu G
    Med Image Comput Comput Assist Interv; 2016 Oct; 9900():106-114. PubMed ID: 28149963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection.
    Wang X; Chu Y; Wang Q; Cao L; Qiao L; Zhang L; Liu M
    Hum Brain Mapp; 2023 Dec; 44(17):5672-5692. PubMed ID: 37668327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic classification of autism using resting-state fMRI data improves with full correlation functional brain connectivity compared to partial correlation.
    Agastinose Ronicko JF; Thomas J; Thangavel P; Koneru V; Langs G; Dauwels J
    J Neurosci Methods; 2020 Nov; 345():108884. PubMed ID: 32730918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and analysis of autism spectrum disorder via large-scale dynamic functional network connectivity.
    Zhuang W; Jia H; Liu Y; Cong J; Chen K; Yao D; Kang X; Xu P; Zhang T
    Autism Res; 2023 Aug; 16(8):1512-1526. PubMed ID: 37365978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining Deep Learning-Based Representations of Resting State Functional Connectivity Data: Focusing on Interpreting Nonlinear Patterns in Autism Spectrum Disorder.
    Kim YG; Ravid O; Zhang X; Kim Y; Neria Y; Lee S; He X; Zhu X
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fMRI data.
    Bandyopadhyay S; Peddi S; Sarma M; Samanta D
    J Neurosci Methods; 2024 May; 405():110100. PubMed ID: 38431227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.