These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33910144)

  • 41. Study on regeneration characteristics of granular activated carbon using ultrasonic and thermal methods.
    Shi K; Xu Z; Wang Y; Fu W; Chen B
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):26580-26591. PubMed ID: 38451460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.
    Pramanik BK; Pramanik SK; Sarker DC; Suja F
    Environ Technol; 2017 Aug; 38(15):1937-1942. PubMed ID: 27666670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst.
    Li F; Wei Z; He K; Blaney L; Cheng X; Xu T; Liu W; Zhao D
    Water Res; 2020 Oct; 185():116219. PubMed ID: 32731078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extending granular activated carbon (GAC) bed life: A column study of in-situ chemical regeneration of pesticide loaded activated carbon for water treatment.
    Larasati A; Fowler GD; Graham NJD
    Chemosphere; 2022 Jan; 286(Pt 3):131888. PubMed ID: 34418652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vesicles Exhibit High-Performance Removal of Per- and Polyfluoroalkyl Substances (PFAS) Depending on their Hydrophobic Groups.
    Usuda H; Mishima Y; Noda K; Toyoshima T; Sakurai K; Takamura C; Takahashi A; Minami K; Kawamoto T
    Chemosphere; 2024 Jul; ():142818. PubMed ID: 39002653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite
    Rostvall A; Zhang W; Dürig W; Renman G; Wiberg K; Ahrens L; Gago-Ferrero P
    Water Res; 2018 Jun; 137():97-106. PubMed ID: 29544207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances.
    Brusseau ML
    Environ Pollut; 2019 Nov; 254(Pt B):113102. PubMed ID: 31491699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photocatalytic degradation of perfluoroalkyl substances in water by using a duo-functional tri-metallic-oxide hybrid catalyst.
    Samuel MS; Shang M; Niu J
    Chemosphere; 2022 Apr; 293():133568. PubMed ID: 35031252
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter.
    Fagbayigbo BO; Opeolu BO; Fatoki OS; Akenga TA; Olatunji OS
    Environ Sci Pollut Res Int; 2017 May; 24(14):13107-13120. PubMed ID: 28382450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced benzene vapor adsorption through microwave-assisted fabrication of activated carbon from peanut shells using ZnCl
    Kutluay S; Şahin Ö; Baytar O
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):27935-27948. PubMed ID: 38523212
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple interactions steered high affinity toward PFAS on ultrathin layered rare-earth hydroxide nanosheets: Remediation performance and molecular-level insights.
    Tan X; Jiang Z; Ding W; Zhang M; Huang Y
    Water Res; 2023 Feb; 230():119558. PubMed ID: 36603309
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge.
    Ochoa-Herrera V; Sierra-Alvarez R
    Chemosphere; 2008 Aug; 72(10):1588-1593. PubMed ID: 18511099
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters.
    Dixit F; Barbeau B; Mostafavi SG; Mohseni M
    Water Res; 2020 Sep; 183():116098. PubMed ID: 32663697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pretreatment of old-age landfill leachate by microwave-assisted catalytic oxidation in the presence of activated carbon.
    Xu XC; Zhang HT; Dong ZY; Fan YF
    Environ Technol; 2013; 34(17-20):2853-8. PubMed ID: 24527650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influences of microwave irradiation on performances of membrane filtration and catalytic degradation of perfluorooctanoic acid (PFOA).
    Liu F; Hua L; Zhang W
    Environ Int; 2020 Oct; 143():105969. PubMed ID: 32702597
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.
    Wang B; Lee LS; Wei C; Fu H; Zheng S; Xu Z; Zhu D
    Environ Pollut; 2016 Sep; 216():884-892. PubMed ID: 27389552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microwave process for volatile organic compound abatement.
    Cha CY; Carlisle CT
    J Air Waste Manag Assoc; 2001 Dec; 51(12):1628-41. PubMed ID: 15666467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Performance of the fixed-bed of granular activated carbon for the removal of pesticides from water supply.
    Alves AAA; Ruiz GLO; Nonato TCM; Müller LC; Sens ML
    Environ Technol; 2019 Jun; 40(15):1977-1987. PubMed ID: 29383989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.