BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 33910214)

  • 21. Dynamic modelling of the PI3K/MTOR signalling network uncovers biphasic dependence of mTORC1 activity on the mTORC2 subunit SIN1.
    Ghomlaghi M; Yang G; Shin SY; James DE; Nguyen LK
    PLoS Comput Biol; 2021 Sep; 17(9):e1008513. PubMed ID: 34529665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mTORC1 and mTORC2 are differentially engaged in the development of laser-induced CNV.
    Yang JY; Madrakhimov SB; Ahn DH; Chang HS; Jung SJ; Nah SK; Park HY; Park TK
    Cell Commun Signal; 2019 Jun; 17(1):64. PubMed ID: 31200728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growing knowledge of the mTOR signaling network.
    Huang K; Fingar DC
    Semin Cell Dev Biol; 2014 Dec; 36():79-90. PubMed ID: 25242279
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential localization and anabolic responsiveness of mTOR complexes in human skeletal muscle in response to feeding and exercise.
    Hodson N; McGlory C; Oikawa SY; Jeromson S; Song Z; Rüegg MA; Hamilton DL; Phillips SM; Philp A
    Am J Physiol Cell Physiol; 2017 Dec; 313(6):C604-C611. PubMed ID: 28971834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Twenty-five years of mTOR: Uncovering the link from nutrients to growth.
    Sabatini DM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(45):11818-11825. PubMed ID: 29078414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic modeling of signal transduction by mTOR complexes in cancer.
    Dorvash M; Farahmandnia M; Mosaddeghi P; Farahmandnejad M; Saber H; Khorraminejad-Shirazi M; Azadi A; Tavassoly I
    J Theor Biol; 2019 Dec; 483():109992. PubMed ID: 31493485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism.
    Chen CH; Kiyan V; Zhylkibayev AA; Kazyken D; Bulgakova O; Page KE; Bersimbaev RI; Spooner E; Sarbassov DD
    J Biol Chem; 2013 Sep; 288(38):27019-27030. PubMed ID: 23928304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of mTOR Signaling: Emerging Role of Cyclic Nucleotide-Dependent Protein Kinases and Implications for Cardiometabolic Disease.
    Shi F; Collins S
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Convergent and Divergent Mechanisms of Epileptogenesis in mTORopathies.
    Nguyen LH; Bordey A
    Front Neuroanat; 2021; 15():664695. PubMed ID: 33897381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperactivity of mTORC1- and mTORC2-dependent signaling mediates epilepsy downstream of somatic PTEN loss.
    Cullen ER; Safari M; Mittelstadt I; Weston MC
    Elife; 2024 Mar; 12():. PubMed ID: 38446016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-EM structure of human mTOR complex 2.
    Chen X; Liu M; Tian Y; Li J; Qi Y; Zhao D; Wu Z; Huang M; Wong CCL; Wang HW; Wang J; Yang H; Xu Y
    Cell Res; 2018 May; 28(5):518-528. PubMed ID: 29567957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RES-529: a PI3K/AKT/mTOR pathway inhibitor that dissociates the mTORC1 and mTORC2 complexes.
    Weinberg MA
    Anticancer Drugs; 2016 Jul; 27(6):475-87. PubMed ID: 26918392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unmasking the impact of Rictor in cancer: novel insights of mTORC2 complex.
    Gkountakos A; Pilotto S; Mafficini A; Vicentini C; Simbolo M; Milella M; Tortora G; Scarpa A; Bria E; Corbo V
    Carcinogenesis; 2018 Jul; 39(8):971-980. PubMed ID: 29955840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mTORC1 and mTORC2 coordinate early NK cell development by differentially inducing E4BP4 and T-bet.
    Li D; Wang Y; Yang M; Dong Z
    Cell Death Differ; 2021 Jun; 28(6):1900-1909. PubMed ID: 33462410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by mTOR Inhibition.
    Damerill I; Biggar KK; Abu Shehab M; Li SS; Jansson T; Gupta MB
    Mol Endocrinol; 2016 Feb; 30(2):201-16. PubMed ID: 26714229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disruption of the Scaffolding Function of mLST8 Selectively Inhibits mTORC2 Assembly and Function and Suppresses mTORC2-Dependent Tumor Growth
    Hwang Y; Kim LC; Song W; Edwards DN; Cook RS; Chen J
    Cancer Res; 2019 Jul; 79(13):3178-3184. PubMed ID: 31085701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Therapeutic Targeting of mTORC2 in mTORopathies.
    Dentel B; Escamilla CO; Tsai PT
    Neuron; 2019 Dec; 104(6):1032-1033. PubMed ID: 31951535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin.
    Zou Z; Chen J; Yang J; Bai X
    Curr Cancer Drug Targets; 2016; 16(4):288-304. PubMed ID: 26563881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. mTORC1 and mTORC2 expression in inner retinal neurons and glial cells.
    Losiewicz MK; Elghazi L; Fingar DC; Rajala RVS; Lentz SI; Fort PE; Abcouwer SF; Gardner TW
    Exp Eye Res; 2020 Aug; 197():108131. PubMed ID: 32622801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting of mTORC2 may have advantages over selective targeting of mTORC1 in the treatment of malignant pheochromocytoma.
    Zhang X; Wang X; Xu T; Zhong S; Shen Z
    Tumour Biol; 2015 Jul; 36(7):5273-81. PubMed ID: 25666752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.