These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33910736)

  • 1. Comparison of cellooligosaccharide conformations in complexes with proteins with energy maps for cellobiose.
    French AD; Montgomery DW; Prevost NT; Edwards JV; Woods RJ
    Carbohydr Polym; 2021 Jul; 264():118004. PubMed ID: 33910736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of the alpha-cellobiose.2 NaI.2 H(2)O complex in the context of related structures and conformational analysis.
    Peralta-Inga Z; Johnson GP; Dowd MK; Rendleman JA; Stevens ED; French AD
    Carbohydr Res; 2002 Apr; 337(9):851-61. PubMed ID: 11996839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The building blocks of cellulose: the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes.
    Cocinero EJ; Gamblin DP; Davis BG; Simons JP
    J Am Chem Soc; 2009 Aug; 131(31):11117-23. PubMed ID: 19722675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT application in conformational determination of cellobiose.
    Yan S; Yao L
    Carbohydr Res; 2015 Mar; 404():117-23. PubMed ID: 25665788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotopic hydration of cellobiose: vibrational spectroscopy and dynamical simulations.
    Pincu M; Cocinero EJ; Mayorkas N; Brauer B; Davis BG; Gerber RB; Simons JP
    J Phys Chem A; 2011 Sep; 115(34):9498-509. PubMed ID: 21631124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tree-step computational approach to simplify conformational determination of cellobiose and lactose.
    Chen D; Wei Z; Yao Y; Liu B
    Carbohydr Res; 2015 Jan; 401():51-7. PubMed ID: 25464081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of cellobiose by electronic structure theories.
    French AD; Johnson GP; Cramer CJ; Csonka GI
    Carbohydr Res; 2012 Mar; 350():68-76. PubMed ID: 22265378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: Density functional theory study substantiated by NMR spectra.
    Cao B; Du J; Du D; Sun H; Zhu X; Fu H
    Carbohydr Polym; 2016 Sep; 149():348-56. PubMed ID: 27261759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of glucose, cellobiose, and cellotetraose onto cellulose model surfaces.
    Hoja J; Maurer RJ; Sax AF
    J Phys Chem B; 2014 Jul; 118(30):9017-27. PubMed ID: 25036217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymorphism in the crystal structure of the cellulose fragment analogue methyl 4-O-methyl-beta-D-glucopyranosyl-(1-4)-beta-D-glucopyranoside.
    Rencurosi A; Röhrling J; Pauli J; Potthast A; Jäger C; Pérez S; Kosma P; Imberty A
    Angew Chem Int Ed Engl; 2002 Nov; 41(22):4277-81. PubMed ID: 12434362
    [No Abstract]   [Full Text] [Related]  

  • 11. GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages.
    Frank M; Lütteke T; von der Lieth CW
    Nucleic Acids Res; 2007 Jan; 35(Database issue):287-90. PubMed ID: 17202175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the interactions between cellulose and biological molecules.
    Cao B; Wang C; Zhou Z
    Carbohydr Res; 2023 Jan; 523():108738. PubMed ID: 36587542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry.
    Loerbroks C; Rinaldi R; Thiel W
    Chemistry; 2013 Nov; 19(48):16282-94. PubMed ID: 24136817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio computational study of beta-cellobiose conformers using B3LYP/6-311++G**.
    Strati GL; Willett JL; Momany FA
    Carbohydr Res; 2002 Nov; 337(20):1833-49. PubMed ID: 12431885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6-311++G**.
    Strati GL; Willett JL; Momany FA
    Carbohydr Res; 2002 Nov; 337(20):1851-9. PubMed ID: 12431886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvents effects on the mechanism of cellulose hydrolysis: A QM/MM study.
    Loerbroks C; Heimermann A; Thiel W
    J Comput Chem; 2015 Jun; 36(15):1114-23. PubMed ID: 25809959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution.
    O'Dell WB; Baker DC; McLain SE
    PLoS One; 2012; 7(10):e45311. PubMed ID: 23056199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, cellobiose, and cellulose solutions.
    Ries ME; Radhi A; Keating AS; Parker O; Budtova T
    Biomacromolecules; 2014 Feb; 15(2):609-17. PubMed ID: 24405090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Assessment of Torsional Strain in Crystal Structures of Small Molecules and Protein-Ligand Complexes using ab Initio Calculations.
    Rai BK; Sresht V; Yang Q; Unwalla R; Tu M; Mathiowetz AM; Bakken GA
    J Chem Inf Model; 2019 Oct; 59(10):4195-4208. PubMed ID: 31573196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Circular Statistics To Model αMan-(1→2)-αMan and αMan-(1→3)-α/βMan O-Glycosidic Linkage Conformation in
    Zhang W; Meredith R; Pan Q; Wang X; Woods RJ; Carmichael I; Serianni AS
    Biochemistry; 2019 Feb; 58(6):546-560. PubMed ID: 30605318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.