These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 33910747)
1. Preparation of chitosan biguanidine/PANI-containing self-healing semi-conductive waterborne scaffolds for bone tissue engineering. Shaabani A; Sedghi R Carbohydr Polym; 2021 Jul; 264():118045. PubMed ID: 33910747 [TBL] [Abstract][Full Text] [Related]
2. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
3. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Liao F; Peng XY; Yang F; Ke QF; Zhu ZH; Guo YP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109999. PubMed ID: 31499945 [TBL] [Abstract][Full Text] [Related]
4. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
5. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Li X; Xu P; Cheng Y; Zhang W; Zheng B; Wang Q Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110749. PubMed ID: 32279810 [TBL] [Abstract][Full Text] [Related]
6. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160 [TBL] [Abstract][Full Text] [Related]
7. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
8. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
9. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Norouz F; Halabian R; Salimi A; Ghollasi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109857. PubMed ID: 31349533 [TBL] [Abstract][Full Text] [Related]
10. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. Liu Y; Zhu Z; Pei X; Zhang X; Cheng X; Hu S; Gao X; Wang J; Chen J; Wan Q ACS Appl Mater Interfaces; 2020 Aug; 12(33):36978-36995. PubMed ID: 32814397 [TBL] [Abstract][Full Text] [Related]
12. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Ho MH; Yao CJ; Liao MH; Lin PI; Liu SH; Chen RM Int J Nanomedicine; 2015; 10():5941-54. PubMed ID: 26451104 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. Santo VE; Duarte AR; Popa EG; Gomes ME; Mano JF; Reis RL J Control Release; 2012 Aug; 162(1):19-27. PubMed ID: 22698936 [TBL] [Abstract][Full Text] [Related]
14. In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis. Kruger EA; Im DD; Bischoff DS; Pereira CT; Huang W; Rudkin GH; Yamaguchi DT; Miller TA Plast Reconstr Surg; 2011 Jun; 127(6):2301-2311. PubMed ID: 21617464 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
16. Conditioned Medium Enhances Osteogenic Differentiation of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Zhong S; He X; Li Y; Lou X Tissue Eng Regen Med; 2019 Apr; 16(2):141-150. PubMed ID: 30989041 [TBL] [Abstract][Full Text] [Related]
17. Promotion of osteogenic differentiation by non-thermal biocompatible plasma treated chitosan scaffold. Li Y; Kim JH; Choi EH; Han I Sci Rep; 2019 Mar; 9(1):3712. PubMed ID: 30842578 [TBL] [Abstract][Full Text] [Related]
18. RGD-conjugated UV-crosslinked chitosan scaffolds inoculated with mesenchymal stem cells for bone tissue engineering. Tsai WB; Chen YR; Li WT; Lai JY; Liu HL Carbohydr Polym; 2012 Jun; 89(2):379-87. PubMed ID: 24750733 [TBL] [Abstract][Full Text] [Related]
19. Bioactive 3D scaffolds self-assembled from phosphorylated mimicking peptide amphiphiles to enhance osteogenesis. Liang P; Zheng J; Zhang Z; Hou Y; Wang J; Zhang C; Quan C J Biomater Sci Polym Ed; 2019 Jan; 30(1):34-48. PubMed ID: 30086655 [TBL] [Abstract][Full Text] [Related]
20. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells. Divband B; Aghazadeh M; Al-Qaim ZH; Samiei M; Hussein FH; Shaabani A; Shahi S; Sedghi R Carbohydr Polym; 2021 Dec; 273():118589. PubMed ID: 34560990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]