These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 339111)

  • 21. Metal chelates in the storage and transport of neurotransmitters: interactions of metal ions with biogenic amines.
    Rajan KS; Davis JM; Colburn RW
    J Neurochem; 1971 Mar; 18(3):345-64. PubMed ID: 5559248
    [No Abstract]   [Full Text] [Related]  

  • 22. Metal chelates in the storage and transport of neurotransmitters: formation of mixed ligand chelates of Mg 2+ -ATP with biogenic amines.
    Rajan KS; Davis JM; Colburn RW; Jarke FH
    J Neurochem; 1972 Apr; 19(4):1099-116. PubMed ID: 4401681
    [No Abstract]   [Full Text] [Related]  

  • 23. The effects of ventromedial tegmental lesions on the disposition of dopamine in the caudate nucleus of the monkey.
    Goldstein M; Anagnoste B; Owen WS; Battista AF
    Brain Res; 1967 Mar; 4(2):298-300. PubMed ID: 4961813
    [No Abstract]   [Full Text] [Related]  

  • 24. Changes in levels of dopamine and tyramine in the rat caudate nucleus following alterations in impulse flow in the nigrostriatal pathway.
    Jones RS; Juorio AV; Boulton AA
    J Neurochem; 1983 Feb; 40(2):396-401. PubMed ID: 6130125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of the effects of methylphenidate and amphetamine on the simultaneous release of radiolabelled dopamine and p- or m-tyramine from rat striatal slices.
    Dyck LE; Boulton AA; Jones RS
    Eur J Pharmacol; 1980 Nov; 68(1):33-40. PubMed ID: 7449832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of cerebral phenolic amines. II. In vivo regional formation of p-tyramine and octopamine from tyrosine and dopamine.
    Boulton AA; Wu PH
    Can J Biochem; 1973 Apr; 51(4):428-35. PubMed ID: 4572198
    [No Abstract]   [Full Text] [Related]  

  • 27. Uptake, storage, and distribution of amines in bovine adrenal medullary vesicles.
    Slotkin TA; Kirshner N
    Mol Pharmacol; 1971 Nov; 7(6):581-92. PubMed ID: 4948239
    [No Abstract]   [Full Text] [Related]  

  • 28. Kappa opioid receptor immunoreactivity in the nucleus accumbens and caudate-putamen is primarily associated with synaptic vesicles in axons.
    Meshul CK; McGinty JF
    Neuroscience; 2000; 96(1):91-9. PubMed ID: 10683414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The developing neostriatum of the rabbit: correlation of fluorescence histochemistry, electron microscopy, endogenous dopamine levels, and ( 3 H)dopamine uptake.
    Tennyson VM; Barrett RE; Cohen G; Côté L; Heikkila R; Mytilineou C
    Brain Res; 1972 Nov; 46():251-85. PubMed ID: 4635366
    [No Abstract]   [Full Text] [Related]  

  • 30. Reserpine-like action of chlorpromazine on rabbit basal ganglia.
    Tagliamonte A; Tagliamonte P; Gessa GL
    J Neurochem; 1970 Jun; 17(6):733-8. PubMed ID: 5426652
    [No Abstract]   [Full Text] [Related]  

  • 31. Proceedings: Tyraminergic mechanisms in rat striatum.
    Boulton AA; Juorio AV; Phillips SR; Wu PH
    Br J Pharmacol; 1975 Oct; 55(2):296P-297P. PubMed ID: 1201423
    [No Abstract]   [Full Text] [Related]  

  • 32. The effects of reserpine and 6-hydroxydopamine on the concentrations of some arylakylamines in rat brain.
    Boulton AA; Juorio AV; Philips SR; Wu PH
    Br J Pharmacol; 1977 Jan; 59(1):209-14. PubMed ID: 837000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles.
    Toll L; Howard BD
    Biochemistry; 1978 Jun; 17(13):2517-23. PubMed ID: 28145
    [No Abstract]   [Full Text] [Related]  

  • 34. Uptake and binding of catecholamines. Effect of diphenylhydantoin and a new mechanism of action.
    Hadfield MG
    Arch Neurol; 1972 Jan; 26(1):78-84. PubMed ID: 4257092
    [No Abstract]   [Full Text] [Related]  

  • 35. The rôle of octopamine in tachyphylaxis to tyramine.
    Pöch GR; Kopin IJ
    Biochem Pharmacol; 1966 Feb; 15(2):210-2. PubMed ID: 5329100
    [No Abstract]   [Full Text] [Related]  

  • 36. Influence of different anions on tyramine and amphetamine uptake by cow adrenal medulla chromaffin vesicles.
    Wagner LA; Koerker RL; Schneider FH
    J Pharm Pharmacol; 1974 Jun; 26(6):464-7. PubMed ID: 4154997
    [No Abstract]   [Full Text] [Related]  

  • 37. Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo.
    Costa E
    Adv Biochem Psychopharmacol; 1970; 2():169-204. PubMed ID: 4399548
    [No Abstract]   [Full Text] [Related]  

  • 38. Is Na(+) required for the binding of dopamine, amphetamine, tyramine, and octopamine to the human dopamine transporter?
    Li LB; Cui XN; Reith MA
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Apr; 365(4):303-11. PubMed ID: 11919655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Nucleotide hydrolytic activity of the synaptic vesicles and the effect on ATPase of sulfhydryl reagents].
    Kharchenko NK; Kudinov SA; Poliakova NM
    Ukr Biokhim Zh; 1973; 45(5):581-6. PubMed ID: 4275280
    [No Abstract]   [Full Text] [Related]  

  • 40. Stereoselectivity of noradrenaline uptake into synaptic vesicles of the rat brain.
    Matthaei H; Pramono S; Philippu A
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Jun; 337(6):621-5. PubMed ID: 3216895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.