BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33911257)

  • 21. A new CUT&RUN low volume-urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/β-catenin tissue-specific genomic targets.
    Zambanini G; Nordin A; Jonasson M; Pagella P; Cantù C
    Development; 2022 Dec; 149(23):. PubMed ID: 36355069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scalable single-cell profiling of chromatin modifications with sciCUT&Tag.
    Janssens DH; Greene JE; Wu SJ; Codomo CA; Minot SS; Furlan SN; Ahmad K; Henikoff S
    Nat Protoc; 2024 Jan; 19(1):83-112. PubMed ID: 37935964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-input chromatin profiling in Arabidopsis endosperm using CUT&RUN.
    Zheng XY; Gehring M
    Plant Reprod; 2019 Mar; 32(1):63-75. PubMed ID: 30719569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications.
    Zhu B; Hsieh YP; Murphy TW; Zhang Q; Naler LB; Lu C
    Nat Protoc; 2019 Dec; 14(12):3366-3394. PubMed ID: 31666743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of nonhistone chromatin proteins: human positive coactivator 4 as a candidate.
    Kumari S; Das C; Sikder S; Kumar M; Bachu M; Ranga U; Kundu TK
    Methods Mol Biol; 2015; 1288():245-72. PubMed ID: 25827884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide histone modification profiling of inner cell mass and trophectoderm of bovine blastocysts by RAT-ChIP.
    Org T; Hensen K; Kreevan R; Mark E; Sarv O; Andreson R; Jaakma Ü; Salumets A; Kurg A
    PLoS One; 2019; 14(11):e0225801. PubMed ID: 31765427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A modified CUT&RUN protocol and analysis pipeline to identify transcription factor binding sites in human cell lines.
    Kong NR; Chai L; Tenen DG; Bassal MA
    STAR Protoc; 2021 Sep; 2(3):100750. PubMed ID: 34458869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.
    Guo F; Li L; Li J; Wu X; Hu B; Zhu P; Wen L; Tang F
    Cell Res; 2017 Aug; 27(8):967-988. PubMed ID: 28621329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chromatin integration labelling method enables epigenomic profiling with lower input.
    Harada A; Maehara K; Handa T; Arimura Y; Nogami J; Hayashi-Takanaka Y; Shirahige K; Kurumizaka H; Kimura H; Ohkawa Y
    Nat Cell Biol; 2019 Feb; 21(2):287-296. PubMed ID: 30532068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide epigenomic profiling for biomarker discovery.
    Dirks RA; Stunnenberg HG; Marks H
    Clin Epigenetics; 2016; 8():122. PubMed ID: 27895806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The nanoCUT&RUN technique visualizes telomeric chromatin in Drosophila.
    Chen T; Wei X; Courret C; Cui M; Cheng L; Wu J; Ahmad K; Larracuente AM; Rong YS
    PLoS Genet; 2022 Sep; 18(9):e1010351. PubMed ID: 36048878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells.
    Yan R; Cheng X; Guo F
    STAR Protoc; 2021 Dec; 2(4):100972. PubMed ID: 34849489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A fluorescence-based protocol to quantitatively titrate CUT&RUN buffer components.
    Katznelson A; Zaret K
    STAR Protoc; 2024 Mar; 5(1):102866. PubMed ID: 38329880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks.
    Rubin AJ; Parker KR; Satpathy AT; Qi Y; Wu B; Ong AJ; Mumbach MR; Ji AL; Kim DS; Cho SW; Zarnegar BJ; Greenleaf WJ; Chang HY; Khavari PA
    Cell; 2019 Jan; 176(1-2):361-376.e17. PubMed ID: 30580963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CoBATCH for High-Throughput Single-Cell Epigenomic Profiling.
    Wang Q; Xiong H; Ai S; Yu X; Liu Y; Zhang J; He A
    Mol Cell; 2019 Oct; 76(1):206-216.e7. PubMed ID: 31471188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell chromatin accessibility reveals principles of regulatory variation.
    Buenrostro JD; Wu B; Litzenburger UM; Ruff D; Gonzales ML; Snyder MP; Chang HY; Greenleaf WJ
    Nature; 2015 Jul; 523(7561):486-90. PubMed ID: 26083756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatin tracing and multiplexed imaging of nucleome architectures (MINA) and RNAs in single mammalian cells and tissue.
    Liu M; Yang B; Hu M; Radda JSD; Chen Y; Jin S; Cheng Y; Wang S
    Nat Protoc; 2021 May; 16(5):2667-2697. PubMed ID: 33903756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Quantitative Profiling Tool for Diverse Genomic Data Types Reveals Potential Associations between Chromatin and Pre-mRNA Processing.
    Kremsky I; Bellora N; Eyras E
    PLoS One; 2015; 10(7):e0132448. PubMed ID: 26207626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.
    Mukherjee S; Hsieh J
    Methods Mol Biol; 2018; 1686():265-286. PubMed ID: 29030827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development.
    Huang Y; Zhang J; Li X; Wu Z; Xie G; Wang Y; Liu Z; Jiao M; Zhang H; Shi B; Wang Y; Zhang Y
    FASEB J; 2023 Sep; 37(9):e23111. PubMed ID: 37531300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.