These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. False gene and chromosome losses in genome assemblies caused by GC content variation and repeats. Kim J; Lee C; Ko BJ; Yoo DA; Won S; Phillippy AM; Fedrigo O; Zhang G; Howe K; Wood J; Durbin R; Formenti G; Brown S; Cantin L; Mello CV; Cho S; Rhie A; Kim H; Jarvis ED Genome Biol; 2022 Sep; 23(1):204. PubMed ID: 36167554 [TBL] [Abstract][Full Text] [Related]
4. Widespread false gene gains caused by duplication errors in genome assemblies. Ko BJ; Lee C; Kim J; Rhie A; Yoo DA; Howe K; Wood J; Cho S; Brown S; Formenti G; Jarvis ED; Kim H Genome Biol; 2022 Sep; 23(1):205. PubMed ID: 36167596 [TBL] [Abstract][Full Text] [Related]
5. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes. Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C Gigascience; 2020 May; 9(5):. PubMed ID: 32449778 [TBL] [Abstract][Full Text] [Related]
6. Bridging the Gap between Vertebrate Cytogenetics and Genomics with Single-Chromosome Sequencing (ChromSeq). Iannucci A; Makunin AI; Lisachov AP; Ciofi C; Stanyon R; Svartman M; Trifonov VA Genes (Basel); 2021 Jan; 12(1):. PubMed ID: 33478118 [TBL] [Abstract][Full Text] [Related]
7. Semi-automated assembly of high-quality diploid human reference genomes. Jarvis ED; Formenti G; Rhie A; Guarracino A; Yang C; Wood J; Tracey A; Thibaud-Nissen F; Vollger MR; Porubsky D; Cheng H; Asri M; Logsdon GA; Carnevali P; Chaisson MJP; Chin CS; Cody S; Collins J; Ebert P; Escalona M; Fedrigo O; Fulton RS; Fulton LL; Garg S; Gerton JL; Ghurye J; Granat A; Green RE; Harvey W; Hasenfeld P; Hastie A; Haukness M; Jaeger EB; Jain M; Kirsche M; Kolmogorov M; Korbel JO; Koren S; Korlach J; Lee J; Li D; Lindsay T; Lucas J; Luo F; Marschall T; Mitchell MW; McDaniel J; Nie F; Olsen HE; Olson ND; Pesout T; Potapova T; Puiu D; Regier A; Ruan J; Salzberg SL; Sanders AD; Schatz MC; Schmitt A; Schneider VA; Selvaraj S; Shafin K; Shumate A; Stitziel NO; Stober C; Torrance J; Wagner J; Wang J; Wenger A; Xiao C; Zimin AV; Zhang G; Wang T; Li H; Garrison E; Haussler D; Hall I; Zook JM; Eichler EE; Phillippy AM; Paten B; Howe K; Miga KH; Nature; 2022 Nov; 611(7936):519-531. PubMed ID: 36261518 [TBL] [Abstract][Full Text] [Related]
8. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Armstrong J; Hickey G; Diekhans M; Fiddes IT; Novak AM; Deran A; Fang Q; Xie D; Feng S; Stiller J; Genereux D; Johnson J; Marinescu VD; Alföldi J; Harris RS; Lindblad-Toh K; Haussler D; Karlsson E; Jarvis ED; Zhang G; Paten B Nature; 2020 Nov; 587(7833):246-251. PubMed ID: 33177663 [TBL] [Abstract][Full Text] [Related]
9. A linked-read approach to museomics: Higher quality de novo genome assemblies from degraded tissues. Colella JP; Tigano A; MacManes MD Mol Ecol Resour; 2020 Jul; 20(4):856-870. PubMed ID: 32153100 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. Goldstein S; Beka L; Graf J; Klassen JL BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323 [TBL] [Abstract][Full Text] [Related]
11. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools. Derakhshani H; Bernier SP; Marko VA; Surette MG BMC Genomics; 2020 Jul; 21(1):519. PubMed ID: 32727443 [TBL] [Abstract][Full Text] [Related]
13. How complete are "complete" genome assemblies?-An avian perspective. Peona V; Weissensteiner MH; Suh A Mol Ecol Resour; 2018 Nov; 18(6):1188-1195. PubMed ID: 30035372 [TBL] [Abstract][Full Text] [Related]
14. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. Garg S; Aach J; Li H; Sebenius I; Durbin R; Church G Bioinformatics; 2020 Apr; 36(8):2385-2392. PubMed ID: 31860070 [TBL] [Abstract][Full Text] [Related]
15. Rapid Low-Cost Assembly of the Solares EA; Chakraborty M; Miller DE; Kalsow S; Hall K; Perera AG; Emerson JJ; Hawley RS G3 (Bethesda); 2018 Oct; 8(10):3143-3154. PubMed ID: 30018084 [TBL] [Abstract][Full Text] [Related]
17. Highly contiguous assemblies of 101 drosophilid genomes. Kim BY; Wang JR; Miller DE; Barmina O; Delaney E; Thompson A; Comeault AA; Peede D; D'Agostino ERR; Pelaez J; Aguilar JM; Haji D; Matsunaga T; Armstrong EE; Zych M; Ogawa Y; Stamenković-Radak M; Jelić M; Veselinović MS; Tanasković M; Erić P; Gao JJ; Katoh TK; Toda MJ; Watabe H; Watada M; Davis JS; Moyle LC; Manoli G; Bertolini E; Košťál V; Hawley RS; Takahashi A; Jones CD; Price DK; Whiteman N; Kopp A; Matute DR; Petrov DA Elife; 2021 Jul; 10():. PubMed ID: 34279216 [TBL] [Abstract][Full Text] [Related]
18. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies. Card DC; Schield DR; Reyes-Velasco J; Fujita MK; Andrew AL; Oyler-McCance SJ; Fike JA; Tomback DF; Ruggiero RP; Castoe TA PLoS One; 2014; 9(9):e106649. PubMed ID: 25192061 [TBL] [Abstract][Full Text] [Related]
19. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Chakraborty M; Baldwin-Brown JG; Long AD; Emerson JJ Nucleic Acids Res; 2016 Nov; 44(19):e147. PubMed ID: 27458204 [TBL] [Abstract][Full Text] [Related]
20. Cost-effective high-throughput single-haplotype iterative mapping and sequencing for complex genomic structures. Bellott DW; Cho TJ; Hughes JF; Skaletsky H; Page DC Nat Protoc; 2018 Apr; 13(4):787-809. PubMed ID: 29565902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]