BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3391168)

  • 21. NMR characterization of surface interactions in the cytochrome b5-cytochrome c complex.
    Burch AM; Rigby SE; Funk WD; MacGillivray RT; Mauk MR; Mauk AG; Moore GR
    Science; 1990 Feb; 247(4944):831-3. PubMed ID: 2154849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical modification of cytochrome b5, cytochrome c and myoglobin with diethylpyrocarbonate.
    Konopka K; Waskell L
    Biochim Biophys Acta; 1988 May; 954(2):189-200. PubMed ID: 2835106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR study of the interaction between cytochrome b5 and cytochrome c. Observation of a ternary complex formed by the two proteins and [Cr(en)3]3+.
    Hartshorn RT; Mauk AG; Mauk MR; Moore GR
    FEBS Lett; 1987 Mar; 213(2):391-5. PubMed ID: 3030818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1H NMR spectroscopic studies of calcium-binding proteins. 2. Histidine microenvironments in alpha- and beta-parvalbumins as determined by protonation and laser photochemically induced dynamic nuclear polarization effects.
    Williams TC; Corson DC; McCubbin WD; Oikawa K; Kay CM; Sykes BD
    Biochemistry; 1986 Apr; 25(7):1826-34. PubMed ID: 3707913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural studies of cytochrome b5: complete sequence-specific resonance assignments for the trypsin-solubilized microsomal ferrocytochrome b5 obtained from pig and calf.
    Guiles RD; Altman J; Kuntz ID; Waskell L; Lipka JJ
    Biochemistry; 1990 Feb; 29(5):1276-89. PubMed ID: 2322562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photochemically induced dynamic nuclear polarization investigation of complex formation of the NH2-terminal DNA-binding domain of lac repressor with poly[d(AT)].
    Buck F; Rüterjans H; Kaptein R; Beyreuther K
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5145-8. PubMed ID: 6933550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topological studies of the membrane-binding segment of cytochrome b5 embedded in phosphatidylcholine vesicles.
    Tajima S; Sato R
    J Biochem; 1980 Jan; 87(1):123-34. PubMed ID: 7358621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand-binding effects on the kringle 4 domain from human plasminogen: a study by laser photo-CIDNP 1H-NMR spectroscopy.
    De Marco A; Petros AM; Llinás M; Kaptein R; Boelens R
    Biochim Biophys Acta; 1989 Feb; 994(2):121-37. PubMed ID: 2535939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in C-terminal amino acid sequences between erythrocyte and liver cytochrome b5 isolated from pig and human. Evidence for two tissue-specific forms of cytochrome b5.
    Kimura S; Abe K; Sugita Y
    FEBS Lett; 1984 Apr; 169(2):143-6. PubMed ID: 6714421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the solution structures and mobility of oxidised and reduced cytochrome b5 by 2D NMR spectroscopy.
    Veitch NC; Concar DW; Williams RJ; Whitford D
    FEBS Lett; 1988 Sep; 238(1):49-55. PubMed ID: 3169253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The aromatic residues of bovine pancreatic ribonuclease studied by 1H nuclear magnetic resonance.
    Lenstra JA; Bolscher BG; Beintema JJ; Kaptein R
    Eur J Biochem; 1979 Aug; 98(2):385-97. PubMed ID: 39752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbohydrate-protein interaction studies by laser photo CIDNP NMR methods.
    Siebert HC; Kaptein R; Beintema JJ; Soedjanaatmadja UM; Wright CS; Rice A; Kleineidam RG; Kruse S; Schauer R; Pouwels PJ; Kamerling JP; Gabius HJ; Vliegenthart JF
    Glycoconj J; 1997 Jun; 14(4):531-4. PubMed ID: 9249155
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of the intact form of NADH-cytochrome b5 reductase from rabbit liver microsomes.
    Mihara K; Sato R
    J Biochem; 1975 Nov; 78(5):1057-73. PubMed ID: 175049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermodynamic investigations of cytochrome b5 unfolding. II. Detergent-solubilized cytochrome b5 in solution and in a reconstituted system with dimyristoyl phosphatidylcholine.
    Bendzko P; Pfeil W
    Biochim Biophys Acta; 1983 Feb; 742(3):669-76. PubMed ID: 6838895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes.
    Kleinfeld AM; Lukacovic MF
    Biochemistry; 1985 Apr; 24(8):1883-90. PubMed ID: 4016089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and structural studies of rabbit erythrocyte cytochrome b5.
    Schafer DA; Hultquist DE
    Biochem Biophys Res Commun; 1983 Sep; 115(3):807-13. PubMed ID: 6626224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence studies of cytochrome b5 topography. Incorporation of cytochrome b5 into brominated phosphatidylcholine vesicles by deoxycholate.
    Tennyson J; Holloway PW
    J Biol Chem; 1986 Oct; 261(30):14196-200. PubMed ID: 3771530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution structure of oxidized microsomal rabbit cytochrome b5. Factors determining the heterogeneous binding of the heme.
    Banci L; Bertini I; Rosato A; Scacchieri S
    Eur J Biochem; 2000 Feb; 267(3):755-66. PubMed ID: 10651812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-CIDNP NMR methods for studying protein folding.
    Mok KH; Hore PJ
    Methods; 2004 Sep; 34(1):75-87. PubMed ID: 15283917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of cytochrome b5 into lipid vesicles in a form which is nonsusceptible to attack by carboxypeptidase Y.
    Christiansen K; Carlsen J
    Biochim Biophys Acta; 1985 May; 815(2):215-22. PubMed ID: 3995025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.