These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 3391175)
1. Lipid-protein interaction. The incorporation of myelin proteolipid apoprotein into phosphatidylcholine bilayers. Goñi FM; Cózar M; Alonso A; Durrani AA; García-Segura LM; Lee DC; Monreal J; Chapman D Eur J Biochem; 1988 Jul; 174(4):641-6. PubMed ID: 3391175 [TBL] [Abstract][Full Text] [Related]
2. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247 [TBL] [Abstract][Full Text] [Related]
3. Integral membrane proteins significantly decrease the molecular motion in lipid bilayers: a deuteron NMR relaxation study of membranes containing myelin proteolipid apoprotein. Meier P; Sachse JH; Brophy PJ; Marsh D; Kothe G Proc Natl Acad Sci U S A; 1987 Jun; 84(11):3704-8. PubMed ID: 3473478 [TBL] [Abstract][Full Text] [Related]
4. Influence of lipid headgroup on the specificity and exchange dynamics in lipid-protein interactions. A spin-label study of myelin proteolipid apoprotein-phospholipid complexes. Horváth LI; Brophy PJ; Marsh D Biochemistry; 1988 Jul; 27(14):5296-304. PubMed ID: 2844256 [TBL] [Abstract][Full Text] [Related]
5. Selectivity of lipid-protein interaction with myelin proteolipids PLP and DM-20. A fluorescence anisotropy study. Houbre D; Schindler P; Trifilieff E; Luu B; Duportail G Biochim Biophys Acta; 1990 Nov; 1029(1):136-42. PubMed ID: 2223804 [TBL] [Abstract][Full Text] [Related]
6. Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition. Boggs JM; Clement IR; Moscarello MA Biochim Biophys Acta; 1980 Sep; 601(1):134-51. PubMed ID: 7407160 [TBL] [Abstract][Full Text] [Related]
7. Lipid solvation of the aqueous form of the myelin proteolipid apoprotein: evidence and characterization of two lipid populations by fluorescence polarization, differential calorimetry, and sucrose gradient centrifugation. Lavialle F; Grabielle-Madelmont C; Petit J; Ollivon M; Alfsen A Biochemistry; 1985 Oct; 24(22):6170-8. PubMed ID: 3917239 [TBL] [Abstract][Full Text] [Related]
8. Protein-catalyzed phospholipid exchange in bilayer vesicles determined by flow cytometry and electron microscopy. Xü YH; Rüppel D; Ziegler H; Hartmann W; Galla HJ Biochim Biophys Acta; 1982 Aug; 689(3):437-43. PubMed ID: 6897001 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of myelin proteolipid apoprotein solvation by multilayer membranes of synthetic DPPC and biological lipid extract from bovine brain. An FT-IR investigation. Nedelec JF; Alfsen A; Lavialle F Biochimie; 1989 Jan; 71(1):145-51. PubMed ID: 2497791 [TBL] [Abstract][Full Text] [Related]
10. Protein-lipid interactions at membrane surfaces: a deuterium and phosphorus nuclear magnetic resonance study of the interaction between bovine rhodopsin and the bilayer head groups of dimyristoylphosphatidylcholine. Ryba NJ; Dempsey CE; Watts A Biochemistry; 1986 Aug; 25(17):4818-25. PubMed ID: 3768315 [TBL] [Abstract][Full Text] [Related]
12. Human proteolipid protein (PLP) mediates winding and adhesion of phospholipid membranes but prevents their fusion. Palaniyar N; Semotok JL; Wood DD; Moscarello MA; Harauz G Biochim Biophys Acta; 1998 Dec; 1415(1):85-100. PubMed ID: 9858696 [TBL] [Abstract][Full Text] [Related]
13. Effects of proteins on thermotropic phase transitions of phospholipid membranes. Papahadjopoulos D; Moscarello M; Eylar EH; Isac T Biochim Biophys Acta; 1975 Sep; 401(3):317-35. PubMed ID: 52374 [TBL] [Abstract][Full Text] [Related]
14. Stages of the bilayer-micelle transition in the system phosphatidylcholine-C12E8 as studied by deuterium- and phosphorous-NMR, light scattering, and calorimetry. Otten D; Löbbecke L; Beyer K Biophys J; 1995 Feb; 68(2):584-97. PubMed ID: 7696511 [TBL] [Abstract][Full Text] [Related]
15. Exchange rates at the lipid-protein interface of myelin proteolipid protein studied by spin-label electron spin resonance. Horváth LI; Brophy PJ; Marsh D Biochemistry; 1988 Jan; 27(1):46-52. PubMed ID: 2450570 [TBL] [Abstract][Full Text] [Related]
17. Interaction of myelin basic protein with single bilayers on a solid support: an NMR, DSC and polarized infrared ATR study. Reinl HM; Bayerl TM Biochim Biophys Acta; 1993 Sep; 1151(2):127-36. PubMed ID: 8373787 [TBL] [Abstract][Full Text] [Related]
18. Conformation of brain proteolipid apoprotein. Effects of sonication and n-octyl-beta-D-glucopyranoside detergent. Carmona P; de Cozar M; Garcia-Segura LM; Monreal J Eur Biophys J; 1988; 16(3):169-76. PubMed ID: 3191885 [TBL] [Abstract][Full Text] [Related]
19. Calcium movements mediated by proteolipid protein and nucleotides in liposomes prepared with the endogenous lipids from brain white matter. Díaz RS; Monreal J; Lucas M J Neurochem; 1990 Oct; 55(4):1304-9. PubMed ID: 1697892 [TBL] [Abstract][Full Text] [Related]
20. Interactions between lipid-anchored and transmembrane proteins. Spin-label ESR studies on avidin-biotinyl phosphatidylethanolamine in membrane recombinants with myelin proteolipid proteins. Swamy MJ; Horváth LI; Brophy PJ; Marsh D Biochemistry; 1999 Dec; 38(49):16333-9. PubMed ID: 10587458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]