BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 33911947)

  • 41. The transcription factors of tall fescue in response to temperature stress.
    Li XY; Wang Y; Dai Y; He Y; Li CX; Mao P; Ma XR
    Plant Biol (Stuttg); 2021 May; 23 Suppl 1():89-99. PubMed ID: 33078492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses.
    Chen C; Chen X; Han J; Lu W; Ren Z
    BMC Plant Biol; 2020 Sep; 20(1):443. PubMed ID: 32977756
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular switches in plant stress adaptation.
    Debnath T; Dhar DG; Dhar P
    Mol Biol Rep; 2023 Dec; 51(1):20. PubMed ID: 38108912
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Dehydration-responsive element-binding (DREB) transcription factor in plants and its role during abiotic stresses].
    Zhang M; Liu W; Bi YP
    Yi Chuan; 2009 Mar; 31(3):236-44. PubMed ID: 19273435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.
    Banerjee A; Roychoudhury A
    Protoplasma; 2017 Jan; 254(1):3-16. PubMed ID: 26669319
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of myosin genes and their expression in response to biotic (PVY, PVX, PVS, and PVA) and abiotic (Drought, Heat, Cold, and High-light) stress conditions in potato.
    Hajibarat Z; Saidi A; Gorji AM; Zeinalabedini M; Ghaffari MR; Hajibarat Z; Nasrollahi A
    Mol Biol Rep; 2022 Dec; 49(12):11983-11996. PubMed ID: 36271979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought.
    Rabara RC; Tripathi P; Rushton PJ
    OMICS; 2014 Oct; 18(10):601-14. PubMed ID: 25118806
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum.
    Deneweth J; Van de Peer Y; Vermeirssen V
    BMC Genomics; 2022 Jan; 23(1):18. PubMed ID: 34983397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.
    Gupta SM; Arora S; Mirza N; Pande A; Lata C; Puranik S; Kumar J; Kumar A
    Front Plant Sci; 2017; 8():643. PubMed ID: 28487720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crosstalk and trade-offs: Plant responses to climate change-associated abiotic and biotic stresses.
    Leisner CP; Potnis N; Sanz-Saez A
    Plant Cell Environ; 2023 Oct; 46(10):2946-2963. PubMed ID: 36585762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops.
    Chaudhary S; Grover A; Sharma PC
    Life (Basel); 2021 Mar; 11(4):. PubMed ID: 33800690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants.
    Khoso MA; Hussain A; Ritonga FN; Ali Q; Channa MM; Alshegaihi RM; Meng Q; Ali M; Zaman W; Brohi RD; Liu F; Manghwar H
    Front Plant Sci; 2022; 13():1039329. PubMed ID: 36426143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants.
    Agarwal PK; Agarwal P; Reddy MK; Sopory SK
    Plant Cell Rep; 2006 Dec; 25(12):1263-74. PubMed ID: 16858552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Climate resilient crops for improving global food security and safety.
    Dhankher OP; Foyer CH
    Plant Cell Environ; 2018 May; 41(5):877-884. PubMed ID: 29663504
    [TBL] [Abstract][Full Text] [Related]  

  • 57. WRKY transcription factors: key components in abscisic acid signalling.
    Rushton DL; Tripathi P; Rabara RC; Lin J; Ringler P; Boken AK; Langum TJ; Smidt L; Boomsma DD; Emme NJ; Chen X; Finer JJ; Shen QJ; Rushton PJ
    Plant Biotechnol J; 2012 Jan; 10(1):2-11. PubMed ID: 21696534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.
    Nakashima K; Yamaguchi-Shinozaki K; Shinozaki K
    Front Plant Sci; 2014; 5():170. PubMed ID: 24904597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses.
    Abdelrahman M; Burritt DJ; Tran LP
    Semin Cell Dev Biol; 2018 Nov; 83():86-94. PubMed ID: 28668354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.