These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33912021)

  • 21. Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation.
    Luo X; Qu H; Wang Y; Yi Z; Zhang J; Zhang M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10141-10153. PubMed ID: 35436200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paired competing neurons improving STDP supervised local learning in Spiking Neural Networks.
    Goupy G; Tirilly P; Bilasco IM
    Front Neurosci; 2024; 18():1401690. PubMed ID: 39119458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges.
    Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S
    Front Neurosci; 2020; 14():634. PubMed ID: 32670012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning Precise Spike Train-to-Spike Train Transformations in Multilayer Feedforward Neuronal Networks.
    Banerjee A
    Neural Comput; 2016 May; 28(5):826-48. PubMed ID: 26942750
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced representation learning with temporal coding in sparsely spiking neural networks.
    Fois A; Girau B
    Front Comput Neurosci; 2023; 17():1250908. PubMed ID: 38077753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CDNA-SNN: A New Spiking Neural Network for Pattern Classification Using Neuronal Assemblies.
    Saranirad V; Dora S; McGinnity TM; Coyle D
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38329858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Heterogeneous Spiking Neural Network for Unsupervised Learning of Spatiotemporal Patterns.
    She X; Dash S; Kim D; Mukhopadhyay S
    Front Neurosci; 2020; 14():615756. PubMed ID: 33519366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
    Mitra S; Fusi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):32-42. PubMed ID: 23853161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MAP-SNN: Mapping spike activities with multiplicity, adaptability, and plasticity into bio-plausible spiking neural networks.
    Yu C; Du Y; Chen M; Wang A; Wang G; Li E
    Front Neurosci; 2022; 16():945037. PubMed ID: 36203801
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning.
    Lee C; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2018; 12():435. PubMed ID: 30123103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is Neuromorphic MNIST Neuromorphic? Analyzing the Discriminative Power of Neuromorphic Datasets in the Time Domain.
    Iyer LR; Chua Y; Li H
    Front Neurosci; 2021; 15():608567. PubMed ID: 33841072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spike-Based Approximate Backpropagation Algorithm of Brain-Inspired Deep SNN for Sonar Target Classification.
    Liu Y; Tian M; Liu R; Cao K; Wang R; Wang Y; Zhao W; Zhou Y
    Comput Intell Neurosci; 2022; 2022():1633946. PubMed ID: 36313052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Sparsity-Driven Backpropagation-Less Learning Framework Using Populations of Spiking Growth Transform Neurons.
    Gangopadhyay A; Chakrabartty S
    Front Neurosci; 2021; 15():715451. PubMed ID: 34393719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rectified Linear Postsynaptic Potential Function for Backpropagation in Deep Spiking Neural Networks.
    Zhang M; Wang J; Wu J; Belatreche A; Amornpaisannon B; Zhang Z; Miriyala VPK; Qu H; Chua Y; Carlson TE; Li H
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1947-1958. PubMed ID: 34534091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.
    Kim Y; Panda P
    Neural Netw; 2021 Dec; 144():686-698. PubMed ID: 34662827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SAM: A Unified Self-Adaptive Multicompartmental Spiking Neuron Model for Learning With Working Memory.
    Yang S; Gao T; Wang J; Deng B; Azghadi MR; Lei T; Linares-Barranco B
    Front Neurosci; 2022; 16():850945. PubMed ID: 35527819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.