BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33913116)

  • 1. Effects of low-molecular-weight polyols on the hydration status of the light-harvesting complex 2 from Rhodobacter sphaeroides 2.4.1.
    Shi Y; Yu J; Liu YC; Wang P; Zhang JP
    Photochem Photobiol Sci; 2021 May; 20(5):627-637. PubMed ID: 33913116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of the hydration status of bacterial light-harvesting complex 2 on polyol cosolvents.
    Shi Y; Yu J; Yu LJ; Wang P; Fu LM; Zhang JP; Wang-Otomo ZY
    Photochem Photobiol Sci; 2017 May; 16(5):795-807. PubMed ID: 28374036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Adaptability of the Light-Harvesting Complex 2 from Thermochromatium tepidum: Temperature-Dependent Excitation Transfer Dynamics.
    Shi Y; Zhao NJ; Wang P; Fu LM; Yu LJ; Zhang JP; Wang-Otomo ZY
    J Phys Chem B; 2015 Nov; 119(47):14871-9. PubMed ID: 26513270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of triplet and cation-radical bacteriochlorophyll a in carotenoidless LH1 and LH2 antenna complexes from Rhodobacter sphaeroides.
    Limantara L; Fujii R; Zhang JP; Kakuno T; Hara H; Kawamori A; Yagura T; Cogdell RJ; Koyama Y
    Biochemistry; 1998 Dec; 37(50):17469-86. PubMed ID: 9860862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides.
    Hörvin Billsten H; Herek JL; Garcia-Asua G; Hashøj L; Polívka T; Hunter CN; Sundström V
    Biochemistry; 2002 Mar; 41(12):4127-36. PubMed ID: 11900556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing structure-function relationships in early events in photosynthesis using a chimeric photocomplex.
    Nagashima KVP; Sasaki M; Hashimoto K; Takaichi S; Nagashima S; Yu LJ; Abe Y; Gotou K; Kawakami T; Takenouchi M; Shibuya Y; Yamaguchi A; Ohno T; Shen JR; Inoue K; Madigan MT; Kimura Y; Wang-Otomo ZY
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10906-10911. PubMed ID: 28935692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polypeptides and bacteriochlorophyll organization in the light-harvesting complex B850 of Rhodobacter sphaeroides R-26.1.
    Braun P; Scherz A
    Biochemistry; 1991 May; 30(21):5177-84. PubMed ID: 2036383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Changes in the Structural Features of Photosynthetic Light-Harvesting Complex 2 by Removal and Reconstitution of B800 Bacteriochlorophyll a Pigments.
    Saga Y; Hirota K; Asakawa H; Takao K; Fukuma T
    Biochemistry; 2017 Jul; 56(27):3484-3491. PubMed ID: 28657308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet energy transfer between bacteriochlorophyll and carotenoids in B850 light-harvesting complexes ofRhodobacter sphaeroides R-26.1.
    Farhoosh R; Chynwat V; Gebhard R; Lugtenburg J; Frank HA
    Photosynth Res; 1994 Nov; 42(2):157-66. PubMed ID: 24306503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the in situ electrochemical oxidation on the pigment-protein arrangement and energy transfer in light-harvesting complex from Rhodobacter sphaeroides 601.
    Liu W; Lu Y; Liu Y; Liu K; Yan Y; Kong J; Xu C; Qian S
    Biochem Biophys Res Commun; 2006 Feb; 340(2):505-11. PubMed ID: 16380087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides.
    Stepanenko I; Kompanetz V; Makhneva Z; Chekalin S; Moskalenko A; Razjivin A
    J Phys Chem B; 2012 Mar; 116(9):2886-90. PubMed ID: 22268655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection.
    Niedzwiedzki DM; Swainsbury DJK; Canniffe DP; Hunter CN; Hitchcock A
    Proc Natl Acad Sci U S A; 2020 Mar; 117(12):6502-6508. PubMed ID: 32139606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The observation of excited-state dynamical evolution in light-harvesting complex LH2 from Rhodobacter sphaeroides 601.
    Guo L; Liu Y; Yang Y; Mi J; Xu C; Xu C; Qian S
    FEBS Lett; 2002 Jan; 511(1-3):69-72. PubMed ID: 11821051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquirement and characterization of a carotenoid mutant (GM309) of Rhodobacter sphaeroides 601.
    Yuan L; Wei Z; Yongqiang W; Chunhe X
    Sci China C Life Sci; 2004 Feb; 47(1):52-8. PubMed ID: 15382676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carotenoid-to-(bacterio)chlorophyll energy transfer in LH2 antenna complexes from Rba. sphaeroides reconstituted with non-native (bacterio)chlorophylls.
    Niedzwiedzki DM; Swainsbury DJK; Hunter CN
    Photosynth Res; 2020 May; 144(2):155-169. PubMed ID: 31350671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation trap approach to analyze size and pigment-pigment coupling: reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyll.
    Fiedor L; Leupold D; Teuchner K; Voigt B; Hunter CN; Scherz A; Scheer H
    Biochemistry; 2001 Mar; 40(12):3737-47. PubMed ID: 11297443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides.
    Gall A; Cogdell RJ; Robert B
    Biochemistry; 2003 Jun; 42(23):7252-8. PubMed ID: 12795622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential energy transfer driven by monoexponential dynamics in a biohybrid light-harvesting complex 2 (LH2).
    Yoneda Y; Kato D; Kondo M; Nagashima KVP; Miyasaka H; Nagasawa Y; Dewa T
    Photosynth Res; 2020 Feb; 143(2):115-128. PubMed ID: 31620983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the Molar Extinction Coefficients of the B800 and B850 Absorption Bands in Light-harvesting Complexes 2 Derived from Three Purple Photosynthetic Bacteria Rhodoblastus acidophilus, Rhodobacter sphaeroides, and Phaeospirillum molischianum by Extraction of Bacteriochlorophyll a.
    Saga Y; Hirota K
    Anal Sci; 2016; 32(7):801-4. PubMed ID: 27396664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinone transport in the closed light-harvesting 1 reaction center complex from the thermophilic purple bacterium Thermochromatium tepidum.
    Kishi R; Imanishi M; Kobayashi M; Takenaka S; Madigan MT; Wang-Otomo ZY; Kimura Y
    Biochim Biophys Acta Bioenerg; 2021 Jan; 1862(1):148307. PubMed ID: 32926863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.