These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33913116)

  • 61. Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin.
    Šlouf V; Keşan G; Litvín R; Swainsbury DJK; Martin EC; Hunter CN; Polívka T
    Photosynth Res; 2018 Mar; 135(1-3):33-43. PubMed ID: 28528494
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reconstitution of 3-Acetyl Chlorophyll
    Saga Y; Yamashita M; Imanishi M; Kimura Y; Masaoka Y; Hidaka T; Nagasawa Y
    ACS Omega; 2020 Mar; 5(12):6817-6825. PubMed ID: 32258917
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carotenoid excited-state properties in photosynthetic purple bacterial reaction centers: effects of the protein environment.
    Pan J; Lin S; Allen JP; Williams JC; Frank HA; Woodbury NW
    J Phys Chem B; 2011 Jun; 115(21):7058-68. PubMed ID: 21488646
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Probing the effect of the binding site on the electrostatic behavior of a series of carotenoids reconstituted into the light-harvesting 1 complex from purple photosynthetic bacterium Rhodospirillum rubrum detected by stark spectroscopy.
    Nakagawa K; Suzuki S; Fujii R; Gardiner AT; Cogdell RJ; Nango M; Hashimoto H
    J Phys Chem B; 2008 Aug; 112(31):9467-75. PubMed ID: 18613723
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3-Acetyl-Chlorophyll Formation in Light-Harvesting Complexes of Purple Bacteria by Chemical Oxidation.
    Makhneva ZK; Ashikhmin AA; Bolshakov MA; Moskalenko AA
    Biochemistry (Mosc); 2016 Feb; 81(2):176-86. PubMed ID: 27260397
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Selective Removal of B800 Bacteriochlorophyll a from Light-Harvesting Complex 2 of the Purple Photosynthetic Bacterium Phaeospirillum molischianum.
    Saga Y; Hirota K; Matsui S; Asakawa H; Ishikita H; Saito K
    Biochemistry; 2018 May; 57(21):3075-3083. PubMed ID: 29771536
    [TBL] [Abstract][Full Text] [Related]  

  • 67. In situ formation of photoactive B-ring reduced chlorophyll isomer in photosynthetic protein LH2.
    Saga Y; Otsuka Y; Funakoshi D; Masaoka Y; Kihara Y; Hidaka T; Hatano H; Asakawa H; Nagasawa Y; Tamiaki H
    Sci Rep; 2020 Nov; 10(1):19383. PubMed ID: 33168889
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A unique low light adaptation mechanism in Rhodobacter azotoformans.
    Li K; Zhao C; Yue H; Yang S
    J Basic Microbiol; 2014 Dec; 54(12):1350-7. PubMed ID: 25213113
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans.
    Niedzwiedzki DM; Fuciman M; Frank HA; Blankenship RE
    Biochim Biophys Acta; 2011 May; 1807(5):518-28. PubMed ID: 21419098
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association.
    Yue H; Zhao C; Li K; Yang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1153-7. PubMed ID: 25305606
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene.
    Frank HA; Chynwat V; Posteraro A; Hartwich G; Simonin I; Scheer H
    Photochem Photobiol; 1996 Nov; 64(5):823-31. PubMed ID: 8931381
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800-850 of rhodobacter sphaeroides 2.4.1 with BChl a and modified (bacterio-)chlorophylls.
    Bandilla M; Ucker B; Ram M; Simonin I; Gelhaye E; McDermott G; Cogdell RJ; Scheer H
    Biochim Biophys Acta; 1998 May; 1364(3):390-402. PubMed ID: 9630729
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Exciton band structure in bacterial peripheral light-harvesting complexes.
    Trinkunas G; Zerlauskiene O; Urbonienė V; Chmeliov J; Gall A; Robert B; Valkunas L
    J Phys Chem B; 2012 May; 116(17):5192-8. PubMed ID: 22480241
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides.
    Allen JP; Artz K; Lin X; Williams JC; Ivancich A; Albouy D; Mattioli TA; Fetsch A; Kuhn M; Lubitz W
    Biochemistry; 1996 May; 35(21):6612-9. PubMed ID: 8639609
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Triplet Excitation Transfer between Carotenoids in the LH2 Complex from Photosynthetic Bacterium Rhodopseudomonas palustris.
    Feng J; Wang Q; Wu YS; Ai XC; Zhang XJ; Huang YG; Zhang XK; Zhang JP
    Photosynth Res; 2004; 82(1):83-94. PubMed ID: 16228615
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Site-directed modification of the ligands to the bacteriochlorophylls of the light-harvesting LH1 and LH2 complexes of Rhodobacter sphaeroides.
    Olsen JD; Sturgis JN; Westerhuis WH; Fowler GJ; Hunter CN; Robert B
    Biochemistry; 1997 Oct; 36(41):12625-32. PubMed ID: 9376369
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elimination of polarity in the carotenoid terminus promotes the exposure of B850-binding sites (Tyr 44, 45) and ANS-mediated energy transfer in LH2 complexes of Rhodobacter sphaeroides.
    Liu Y; Wu Y; Xu C
    Biochem Biophys Res Commun; 2004 Dec; 325(2):600-4. PubMed ID: 15530435
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Selective repression of light harvesting complex 2 formation in Rhodobacter azotoformans by light under semiaerobic conditions.
    Yue H; Zhao C; Li K; Yang S
    J Basic Microbiol; 2015 Nov; 55(11):1319-25. PubMed ID: 26193456
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enhanced rates of subpicosecond energy transfer in blue-shifted light harvesting LH2 mutants of Rhodobacter sphaeroides.
    Hess S; Visscher KJ; Pullerits T; Sundström V; Fowler GJ; Hunter CN
    Biochemistry; 1994 Jul; 33(27):8300-5. PubMed ID: 8031762
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides.
    Nagarajan V; Parson WW
    Biochemistry; 1997 Feb; 36(8):2300-6. PubMed ID: 9047332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.