These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33913187)

  • 41. Structure and function in native and pathological erythrocytes: a quantitative view from the nanoscale.
    Girasole M; Dinarelli S; Boumis G
    Micron; 2012 Dec; 43(12):1273-86. PubMed ID: 22537716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanointerrogation of ultrasonic contrast agent microbubbles using atomic force microscopy.
    Sboros V; Glynos E; Pye SD; Moran CM; Butler M; Ross J; Short R; McDicken WN; Koutsos V
    Ultrasound Med Biol; 2006 Apr; 32(4):579-85. PubMed ID: 16616603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hierarchical chromatin structure of Schizosaccharomyces pombe revealed by atomic force microscopy.
    Kobori T; Yoshino T; Sugiyama S; Ohtani T
    Curr Microbiol; 2003 Nov; 47(5):404-7. PubMed ID: 14669918
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell wall ultrastructure of flocculent and non-flocculent Schizosaccharomyces pombe strains. Effect of cell wall hydrolysing enzymes on flocculation and cell wall ultastructure.
    Geleta A; Kristóf Z; Maráz A
    Acta Microbiol Immunol Hung; 2007 Mar; 54(1):35-46. PubMed ID: 17523390
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of cell wall formation in fission yeast, Schizosaccharomyces pombe.
    Osumi M; Sato M; Ishijima SA; Konomi M; Takagi T; Yaguchi H
    Fungal Genet Biol; 1998; 24(1-2):178-206. PubMed ID: 9742201
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization of alpha-Galactomannan on the surface of Schizosaccharomyces pombe cells by scanning electron microscopy.
    Horiseberger M; Rosset J
    Arch Microbiol; 1977 Mar; 112(2):123-6. PubMed ID: 849098
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy.
    Hoh JH; Schoenenberger CA
    J Cell Sci; 1994 May; 107 ( Pt 5)():1105-14. PubMed ID: 7929621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of drug delivery vehicles using atomic force microscopy: current status.
    Smith JR; Olusanya TOB; Lamprou DA
    Expert Opin Drug Deliv; 2018 Dec; 15(12):1211-1221. PubMed ID: 30417712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Atomic force microscopic analysis of the binding of the Schizosaccharomyces pombe origin recognition complex and the spOrc4 protein with origin DNA.
    Gaczynska M; Osmulski PA; Jiang Y; Lee JK; Bermudez V; Hurwitz J
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17952-7. PubMed ID: 15598736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An AFM-based stiffness clamp for dynamic control of rigidity.
    Webster KD; Crow A; Fletcher DA
    PLoS One; 2011 Mar; 6(3):e17807. PubMed ID: 21408137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial nanoscopy: a closer look at microbial cell surfaces.
    Dupres V; Alsteens D; Andre G; Dufrêne YF
    Trends Microbiol; 2010 Sep; 18(9):397-405. PubMed ID: 20630762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of tubulin and actin through the cell division cycle of the fission yeast Schizosaccharomyces japonicus var. versatilis: a comparison with Schizosaccharomyces pombe.
    Alfa CE; Hyams JS
    J Cell Sci; 1990 May; 96 ( Pt 1)():71-7. PubMed ID: 2197287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation.
    Coq Germanicus R; Mercier D; Agrebi F; FÈbvre M; Mariolle D; Descamps P; LeclÈre P
    J Microsc; 2020 Jun; ():. PubMed ID: 32515496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanomechanical Mapping of Hard Tissues by Atomic Force Microscopy: An Application to Cortical Bone.
    Bontempi M; Salamanna F; Capozza R; Visani A; Fini M; Gambardella A
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells.
    Hecht E; Usmani SM; Albrecht S; Wittekindt OH; Dietl P; Mizaikoff B; Kranz C
    Anal Bioanal Chem; 2011 Mar; 399(7):2369-78. PubMed ID: 21116619
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time imaging of the surface topography of living yeast cells by atomic force microscopy.
    Ahimou F; Touhami A; Dufrêne YF
    Yeast; 2003 Jan; 20(1):25-30. PubMed ID: 12489123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and nanomechanical properties of Termitomyces clypeatus cell wall and its interaction with chromium(VI).
    Das SK; Das AR; Guha AK
    J Phys Chem B; 2009 Feb; 113(5):1485-92. PubMed ID: 19146378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.
    Canetta E; Walker GM; Adya AK
    ScientificWorldJournal; 2006 Jul; 6():777-80. PubMed ID: 16830049
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review.
    Mukherjee R; Saha M; Routray A; Chakraborty C
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):625-33. PubMed ID: 25935044
    [TBL] [Abstract][Full Text] [Related]  

  • 60. FC_analysis: a tool for investigating atomic force microscopy maps of force curves.
    Dinarelli S; Girasole M; Longo G
    BMC Bioinformatics; 2018 Jul; 19(1):258. PubMed ID: 29976136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.