These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 33913288)
1. [Kinematics analysis and scale optimization of four degree of freedom generalized spherical parallel mechanism for ankle joint rehabilitation]. Liu X; Zhang J; Liu C; Niu J; Qi K; Guo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):286-294. PubMed ID: 33913288 [TBL] [Abstract][Full Text] [Related]
2. [Kinematics and workspace analysis of a spherical exoskeleton parallel mechanism]. Zhao Y; Xia H; Yao Y; Li R Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Apr; 36(2):213-222. PubMed ID: 31016937 [TBL] [Abstract][Full Text] [Related]
3. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion. Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826 [TBL] [Abstract][Full Text] [Related]
4. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation. Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434 [No Abstract] [Full Text] [Related]
5. One-degree-of-freedom spherical model for the passive motion of the human ankle joint. Sancisi N; Baldisserri B; Parenti-Castelli V; Belvedere C; Leardini A Med Biol Eng Comput; 2014 Apr; 52(4):363-73. PubMed ID: 24469959 [TBL] [Abstract][Full Text] [Related]
6. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. Liao Z; Yao L; Lu Z; Zhang J Int J Intell Robot Appl; 2018; 2(3):351-360. PubMed ID: 30294664 [TBL] [Abstract][Full Text] [Related]
7. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
8. Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles. Wong Y; Kim W; Ying N J Biomech; 2005 Dec; 38(12):2480-5. PubMed ID: 16214496 [TBL] [Abstract][Full Text] [Related]
9. Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities. Pitcairn S; Kromka J; Hogan M; Anderst W J Biomech; 2020 Apr; 103():109696. PubMed ID: 32139098 [TBL] [Abstract][Full Text] [Related]
10. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot. Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564 [TBL] [Abstract][Full Text] [Related]
11. State of the art in parallel ankle rehabilitation robot: a systematic review. Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757 [TBL] [Abstract][Full Text] [Related]
12. Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard. Nichols JA; Roach KE; Fiorentino NM; Anderson AE Gait Posture; 2016 Sep; 49():136-143. PubMed ID: 27414041 [TBL] [Abstract][Full Text] [Related]
13. Cadaveric Gait Simulation of the Effect of Subtalar Arthrodesis on Total Ankle Replacement Kinematics. Henry JK; Sturnick D; Rosenbaum A; Saito GH; Deland J; Steineman B; Demetracopoulos C Foot Ankle Int; 2022 Aug; 43(8):1110-1117. PubMed ID: 35466728 [TBL] [Abstract][Full Text] [Related]
14. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR). Zhang L; Li J; Dong M; Fang B; Cui Y; Zuo S; Zhang K J Healthc Eng; 2019; 2019():4164790. PubMed ID: 31001407 [TBL] [Abstract][Full Text] [Related]
15. Design and evaluation of a symmetric amplification mechanism based anthropomorphic shoulder. Wu J; Wan G; Liang J Bioinspir Biomim; 2024 Jun; 19(4):. PubMed ID: 38848735 [TBL] [Abstract][Full Text] [Related]
16. Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot. Dong M; Kong Y; Li J; Fan W J Healthc Eng; 2020; 2020():3053629. PubMed ID: 32963748 [TBL] [Abstract][Full Text] [Related]
17. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Di Gregorio R; Parenti-Castelli V; O'Connor JJ; Leardini A Med Biol Eng Comput; 2007 Mar; 45(3):305-13. PubMed ID: 17295023 [TBL] [Abstract][Full Text] [Related]
18. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints--Part I: Kinematics. Siegler S; Chen J; Schneck CD J Biomech Eng; 1988 Nov; 110(4):364-73. PubMed ID: 3205022 [TBL] [Abstract][Full Text] [Related]
19. Development of three-dimensional motion measuring device for the human ankle joint by using parallel link mechanism. Yonezawa T; Onodera T; Ming Ding ; Mizoguchi H; Takemura H; Ogitsu T Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4358-61. PubMed ID: 25570957 [TBL] [Abstract][Full Text] [Related]
20. Ankle and hindfoot motion of healthy adults during running revealed by dynamic biplane radiography: Side-to-side symmetry, sex-specific differences, and comparison with walking. Setliff JC; Paulus PF; Yamamoto T; Yang S; Hogan MV; Anderst WJ Med Eng Phys; 2024 Apr; 126():104151. PubMed ID: 38621840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]