These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33913296)

  • 1. [Mirror-type rehabilitation training with dynamic adjustment and assistance for shoulder joint].
    Chen S; Yan Y; Xu G; Gao X; Huang K; Tai C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):351-360. PubMed ID: 33913296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient's Healthy-Limb Motion Characteristic-Based Assist-As-Needed Control Strategy for Upper-Limb Rehabilitation Robots.
    Guo B; Li Z; Huang M; Li X; Han J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mirror Bilateral Neuro-Rehabilitation Robot System with the sEMG-Based Real-Time Patient Active Participant Assessment.
    Yang Z; Guo S; Hirata H; Kawanishi M
    Life (Basel); 2021 Nov; 11(12):. PubMed ID: 34947820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training.
    Cai S; Chen Y; Huang S; Wu Y; Zheng H; Li X; Xie L
    Front Neurorobot; 2019; 13():31. PubMed ID: 31214010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric control algorithm for robot-assisted therapy: a hardware-in-the-loop simulation study.
    Yepes JC; Portela MA; Saldarriaga ÁJ; Pérez VZ; Betancur MJ
    Biomed Eng Online; 2019 Jan; 18(1):3. PubMed ID: 30606192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot.
    Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F
    Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].
    Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static Model of Athlete's Upper Limb Posture Rehabilitation Training Indexes.
    He R; Sun X; Yu X; Xia H; Chen S
    Biomed Res Int; 2022; 2022():9353436. PubMed ID: 35898674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectrically controlled wrist robot for stroke rehabilitation.
    Song R; Tong KY; Hu X; Zhou W
    J Neuroeng Rehabil; 2013 Jun; 10():52. PubMed ID: 23758925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human-Robot Interaction Force Measurement.
    Yu F; Liu Y; Wu Z; Tan M; Yu J
    Cyborg Bionic Syst; 2024; 5():0115. PubMed ID: 38912323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shoulder motion assistance using a single-joint Hybrid Assistive Limb
    Makihara T; Kadone H; Onishi S; Kubota S; Hada Y; Shimizu Y; Kawamoto H; Sankai Y; Yamazaki M
    J Orthop Surg (Hong Kong); 2017; 25(3):2309499017727951. PubMed ID: 28862102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.