These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3391339)
1. Intact adipocyte insulin-receptor phosphorylation and in vitro tyrosine kinase activity in animal models of insulin resistance. Truglia JA; Hayes GR; Lockwood DH Diabetes; 1988 Feb; 37(2):147-53. PubMed ID: 3391339 [TBL] [Abstract][Full Text] [Related]
2. Glucose and insulin regulate insulin sensitivity in primary cultured adipocytes without affecting insulin receptor kinase activity. Lima FB; Thies RS; Garvey WT Endocrinology; 1991 May; 128(5):2415-26. PubMed ID: 2019259 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of insulin resistance induced by sustained levels of cytosolic free calcium in rat adipocytes. Draznin B; Lewis D; Houlder N; Sherman N; Adamo M; Garvey WT; LeRoith D; Sussman K Endocrinology; 1989 Nov; 125(5):2341-9. PubMed ID: 2551647 [TBL] [Abstract][Full Text] [Related]
4. Decreased tyrosine kinase activity of insulin receptor isolated from rat adipocytes rendered insulin-resistant by catecholamine treatment in vitro. Häring H; Kirsch D; Obermaier B; Ermel B; Machicao F Biochem J; 1986 Feb; 234(1):59-66. PubMed ID: 3518707 [TBL] [Abstract][Full Text] [Related]
5. Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. Thies RS; Molina JM; Ciaraldi TP; Freidenberg GR; Olefsky JM Diabetes; 1990 Feb; 39(2):250-9. PubMed ID: 2227134 [TBL] [Abstract][Full Text] [Related]
6. Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity. Jacobs DB; Hayes GR; Lockwood DH Metabolism; 1987 Jun; 36(6):548-54. PubMed ID: 3295472 [TBL] [Abstract][Full Text] [Related]
7. Quantitative dissociation of glucose transport stimulation and insulin receptor tyrosine kinase activation in isolated adipocytes with a covalent insulin dimer (B29,B29'-suberoyl-insulin). Joost HG; Göke R; Schmitz-Salue C; Steinfelder HJ; Brandenburg D Biochem Pharmacol; 1989 Jul; 38(14):2269-77. PubMed ID: 2546561 [TBL] [Abstract][Full Text] [Related]
8. Insulin-receptor kinase activity of adipose tissue from morbidly obese humans with and without NIDDM. Sinha MK; Pories WJ; Flickinger EG; Meelheim D; Caro JF Diabetes; 1987 May; 36(5):620-5. PubMed ID: 3032715 [TBL] [Abstract][Full Text] [Related]
9. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Hayes GR; Lockwood DH Proc Natl Acad Sci U S A; 1987 Nov; 84(22):8115-9. PubMed ID: 3317401 [TBL] [Abstract][Full Text] [Related]
10. Isoproterenol reduces insulin stimulation of hexose uptake by rat adipocytes via a postinsulin binding alteration. Arsenis G; Livingston JN Endocrinology; 1986 Jul; 119(1):50-7. PubMed ID: 3013597 [TBL] [Abstract][Full Text] [Related]
11. In vitro effects of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozocin-induced diabetic rats. Jacobs DB; Hayes GR; Lockwood DH Diabetes; 1989 Feb; 38(2):205-11. PubMed ID: 2492475 [TBL] [Abstract][Full Text] [Related]
12. Alteration of insulin-receptor kinase activity by high-fat feeding. Watarai T; Kobayashi M; Takata Y; Sasaoka T; Iwasaki M; Shigeta Y Diabetes; 1988 Oct; 37(10):1397-404. PubMed ID: 2843408 [TBL] [Abstract][Full Text] [Related]
13. Alterations of glucose transporter systems in insulin-resistant uremic rats. Jacobs DB; Hayes GR; Truglia JA; Lockwood DH Am J Physiol; 1989 Aug; 257(2 Pt 1):E193-7. PubMed ID: 2669514 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of IGF-I-stimulated glucose transport in human adipocytes. Demonstration of specific IGF-I receptors not involved in stimulation of glucose transport. Sinha MK; Buchanan C; Leggett N; Martin L; Khazanie PG; Dimarchi R; Pories WJ; Caro JF Diabetes; 1989 Oct; 38(10):1217-25. PubMed ID: 2551760 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of cellular insulin resistance in human pregnancy. Ciaraldi TP; Kettel M; el-Roeiy A; Madar Z; Reichart D; Yen SS; Olefsky JM Am J Obstet Gynecol; 1994 Feb; 170(2):635-41. PubMed ID: 8116725 [TBL] [Abstract][Full Text] [Related]
16. Alterations in the insulin signaling pathway induced by immortalization and H-ras transformation of brown adipocytes. Valverde AM; Lorenzo M; Teruel T; Benito M Endocrinology; 1997 Aug; 138(8):3195-206. PubMed ID: 9231768 [TBL] [Abstract][Full Text] [Related]
17. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity. Magri KA; Adamo M; Leroith D; Etherton TD Biochem J; 1990 Feb; 266(1):107-13. PubMed ID: 2155602 [TBL] [Abstract][Full Text] [Related]
18. Cellular basis of insulin resistance in chronic uremia. Maloff BL; McCaleb ML; Lockwood DH Am J Physiol; 1983 Aug; 245(2):E178-84. PubMed ID: 6349382 [TBL] [Abstract][Full Text] [Related]
19. Insulin-dependent phosphorylation of the insulin receptor-protein kinase and activation of glucose transport in 3T3-L1 adipocytes. Kohanski RA; Frost SC; Lane MD J Biol Chem; 1986 Sep; 261(26):12272-81. PubMed ID: 3528154 [TBL] [Abstract][Full Text] [Related]
20. Insulin receptor kinase activity in rat adipocytes is decreased during aging. Carrascosa JM; Ruíz P; Martínez C; Pulido JA; Satrústegui J; Andrés A Biochem Biophys Res Commun; 1989 Apr; 160(1):303-9. PubMed ID: 2653319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]