These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33913777)

  • 1. Exponential decay: an approach to model nutrient uptake rates of macrophytes.
    Nesan D; Chan DJC
    Int J Phytoremediation; 2021; 23(14):1519-1524. PubMed ID: 33913777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: A comparative study.
    Ng YS; Chan DJC
    Int J Phytoremediation; 2018; 20(12):1179-1186. PubMed ID: 29053371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation.
    Das S; Das A; Mazumder PET; Paul R; Das S
    Int J Phytoremediation; 2021; 23(12):1279-1288. PubMed ID: 33678068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light intensity alters the phytoremediation potential of Lemna minor.
    Walsh É; Kuehnhold H; O'Brien S; Coughlan NE; Jansen MAK
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16394-16407. PubMed ID: 33387327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters.
    Ceschin S; Crescenzi M; Iannelli MA
    Environ Sci Pollut Res Int; 2020 May; 27(13):15806-15814. PubMed ID: 32088823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating aquatic macrophytes for removing erythromycin from contaminated water: floating or submerged?
    Rocha CS; Kochi LY; Ribeiro GB; Rocha DC; Carneiro DNM; Gomes MP
    Int J Phytoremediation; 2022; 24(9):995-1003. PubMed ID: 34686072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floating aquatic macrophytes for the treatment of aquaculture effluents.
    de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of the calcium-to-magnesium ratio for phytoremediation of dairy industry wastewater using the aquatic plant
    Walsh É; Paolacci S; Burnell G; Jansen MAK
    Int J Phytoremediation; 2020; 22(7):694-702. PubMed ID: 31910655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation processes of domestic and textile effluents: evaluation of the efficacy and toxicological effects in Lemna minor and Daphnia magna.
    de Alkimin GD; Paisio C; Agostini E; Nunes B
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):4423-4441. PubMed ID: 31832946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.
    Hadad HR; Mufarrege MM; Di Luca GA; Maine MA
    Water Sci Technol; 2017 Apr; 2017(1):270-275. PubMed ID: 29698241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of benzotriazole micropollutants using Spirodela polyrhiza (L.) Schleid. And Azolla caroliniana Willd.
    Polińska W; Kotowska U; Karpińska J; Piotrowska-Niczyporuk A
    Environ Pollut; 2023 Sep; 332():121982. PubMed ID: 37301460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of diclofenac using the Green Liver System: Macrophyte screening to system optimization.
    Esterhuizen M; Pflugmacher S
    N Biotechnol; 2023 Sep; 76():82-89. PubMed ID: 37217117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.).
    Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):84-96. PubMed ID: 19104863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of environmental parameters on Lemna minor growth: An integrated experimental and modelling approach.
    Van Dyck I; Vanhoudt N; Vives I Batlle J; Horemans N; Nauts R; Van Gompel A; Claesen J; Vangronsveld J
    J Environ Manage; 2021 Dec; 300():113705. PubMed ID: 34530368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process variables that defined the phytofiltration efficiency of invasive macrophytes in aquatic system.
    Bulu YI; Oladoja NA
    Int J Phytoremediation; 2023; 25(13):1774-1792. PubMed ID: 37051867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastics and co-pollutant with ciprofloxacin affect interactions between free-floating macrophytes.
    Mao H; Yang H; Xu Z; Yang Y; Zhang X; Huang F; Wei L; Li Z
    Environ Pollut; 2023 Jan; 316(Pt 1):120546. PubMed ID: 36332704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.
    Saha P; Banerjee A; Sarkar S
    Int J Phytoremediation; 2015; 17(1-6):589-96. PubMed ID: 25192438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can aquatic macrophytes be biofilters for gadolinium based contrasting agents?
    Braun M; Zavanyi G; Laczovics A; Berényi E; Szabó S
    Water Res; 2018 May; 135():104-111. PubMed ID: 29459116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.