These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33913795)

  • 1. A comparison of speech intelligibility and subjective quality with hearing-aid processing in older adults with hearing loss.
    Arehart KH; Chon SH; Lundberg EMH; Harvey LO; Kates JM; Anderson MC; Rallapalli VH; Souza PE
    Int J Audiol; 2022 Jan; 61(1):46-58. PubMed ID: 33913795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
    Arehart K; Souza P; Kates J; Lunner T; Pedersen MS
    Ear Hear; 2015; 36(5):505-16. PubMed ID: 25985016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working memory, age, and hearing loss: susceptibility to hearing aid distortion.
    Arehart KH; Souza P; Baca R; Kates JM
    Ear Hear; 2013; 34(3):251-60. PubMed ID: 23291963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Variability in Individual Response to Hearing Aid Signal Processing in Wearable Hearing Aids.
    Souza P; Arehart K; Schoof T; Anderson M; Strori D; Balmert L
    Ear Hear; 2019; 40(6):1280-1292. PubMed ID: 30998547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of noise, nonlinear processing, and linear filtering on perceived speech quality.
    Arehart KH; Kates JM; Anderson MC
    Ear Hear; 2010 Jun; 31(3):420-36. PubMed ID: 20440116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of slow-acting wide dynamic range compression on measures of intelligibility and ratings of speech quality in simulated-loss listeners.
    Rosengard PS; Payton KL; Braida LD
    J Speech Lang Hear Res; 2005 Jun; 48(3):702-14. PubMed ID: 16197282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of the HASPI and HASQI metrics for predicting speech intelligibility and speech quality for normal hearing, hearing loss, and hearing aids.
    Kates JM; Arehart KH
    Hear Res; 2022 Dec; 426():108608. PubMed ID: 36137862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Directional Microphone and Noise Reduction on Subcortical and Cortical Auditory-Evoked Potentials in Older Listeners With Hearing Loss.
    Slugocki C; Kuk F; Korhonen P
    Ear Hear; 2020; 41(5):1282-1293. PubMed ID: 32058351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of noise reduction on speech intelligibility, perceived listening effort, and personal preference in hearing-impaired listeners.
    Brons I; Houben R; Dreschler WA
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25315377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing Binaural Pre-processing Strategies III: Speech Intelligibility of Normal-Hearing and Hearing-Impaired Listeners.
    Völker C; Warzybok A; Ernst SM
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monaural/binaural preferences: effect of hearing aid circuit on speech intelligibility and sound quality.
    Naidoo SV; Hawkins DB
    J Am Acad Audiol; 1997 Jun; 8(3):188-202. PubMed ID: 9188076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural envelope tracking predicts speech intelligibility and hearing aid benefit in children with hearing loss.
    Van Hirtum T; Somers B; Dieudonné B; Verschueren E; Wouters J; Francart T
    Hear Res; 2023 Nov; 439():108893. PubMed ID: 37806102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Listener Factors Associated with Individual Susceptibility to Reverberation.
    Reinhart PN; Souza PE
    J Am Acad Audiol; 2018 Jan; 29(1):73-82. PubMed ID: 29309025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of temporally processed speech by listeners with hearing impairment.
    Calandruccio L; Doherty KA; Carney LH; Kikkeri HN
    Ear Hear; 2007 Aug; 28(4):512-23. PubMed ID: 17609613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech intelligibility benefits of hearing AIDS at various input levels.
    Kuk F; Lau CC; Korhonen P; Crose B
    J Am Acad Audiol; 2015 Mar; 26(3):275-88. PubMed ID: 25751695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of transient noise reduction algorithms on speech intelligibility and ratings of hearing aid users.
    DiGiovanni JJ; Davlin EA; Nagaraj NK
    Am J Audiol; 2011 Dec; 20(2):140-50. PubMed ID: 21940982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of multi-channel compression time constants on subjectively perceived sound quality and speech intelligibility.
    Hansen M
    Ear Hear; 2002 Aug; 23(4):369-80. PubMed ID: 12195179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left Lateralization of the Cortical Auditory-Evoked Potential Reflects Aided Processing and Speech-in-Noise Performance of Older Listeners With a Hearing Loss.
    Slugocki C; Kuk F; Korhonen P
    Ear Hear; 2023 Mar-Apr 01; 44(2):399-410. PubMed ID: 36331191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Extended Bandwidth Hearing Aid Amplification on Speech Intelligibility and Sound Quality in Adults with Mild-to-Moderate Hearing Loss.
    Seeto A; Searchfield GD
    J Am Acad Audiol; 2018 Mar; 29(3):243-254. PubMed ID: 29488874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.
    de Taillez T; Grimm G; Kollmeier B; Neher T
    Int J Audiol; 2018 Jun; 57(sup3):S81-S91. PubMed ID: 28395561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.