BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33913945)

  • 21. Plasmonic Nanosensors with Extraordinary Sensitivity to Molecularly Enantioselective Recognition at Nanoscale Interfaces.
    Liu S; Ma X; Song M; Ji CY; Song J; Ji Y; Ma S; Jiang J; Wu X; Li J; Liu M; Wang RY
    ACS Nano; 2021 Dec; 15(12):19535-19545. PubMed ID: 34797065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sugar-assisted kinetic resolution of amino acids and amplification of enantiomeric excess of organic molecules.
    Córdova A; Sundén H; Xu Y; Ibrahem I; Zou W; Engqvist M
    Chemistry; 2006 Jul; 12(21):5446-51. PubMed ID: 16770817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of absolute configurations of amines and amino acids using nonchiral derivatizing agents (NCDA) and deuterium NMR.
    Chalard P; Bertrand M; Canet I; Théry V; Remuson R; Jeminet G
    Org Lett; 2000 Aug; 2(16):2431-4. PubMed ID: 10956514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Coumarin-containing chiral discriminating agents. VII. New crystalline 1H-NMR enantiomeric excess determination reagent for alcohols and amines, (R)-(-)- and (S)-(+)-O-coumarinylmandelic acids].
    Nagasawa K; Seto N; Hara C; Ito K
    Yakugaku Zasshi; 1997 Nov; 117(10-11):786-99. PubMed ID: 9414591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric Strecker Reaction Arising from the Molecular Orientation of an Achiral Imine at the Single-Crystal Face: Enantioenriched l- and d-Amino Acids.
    Miyagawa S; Yoshimura K; Yamazaki Y; Takamatsu N; Kuraishi T; Aiba S; Tokunaga Y; Kawasaki T
    Angew Chem Int Ed Engl; 2017 Jan; 56(4):1055-1058. PubMed ID: 28004489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Toward Fluorescence-Based High-Throughput Screening for Enantiomeric Excess in Amines and Amino Acid Derivatives.
    Shcherbakova EG; Brega V; Minami T; Sheykhi S; James TD; Anzenbacher P
    Chemistry; 2016 Jul; 22(29):10074-80. PubMed ID: 27271215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the concentration and enantiomeric purity of selected free amino acids in fermented malt beverages (beers).
    Ekborg-Ott KH; Armstrong DW
    Chirality; 1996; 8(1):49-57. PubMed ID: 8845281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Semiquantitative Visual Chiral Assay with a Pseudoenantiomeric Fluorescent Sensor Pair.
    Chen Y; Zhao F; Tian J; Jiang L; Lu K; Jiang Y; Li H; Yu S; Yu X; Pu L
    J Org Chem; 2021 Jul; 86(14):9603-9609. PubMed ID: 34165295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enantioselective Fluorescent Imaging of Free Amino Acids in Living Cells.
    Zeng C; Zhang X; Pu L
    Chemistry; 2017 Feb; 23(10):2432-2438. PubMed ID: 27911982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Racemic D,L-asparagine causes enantiomeric excess of other coexisting racemic D,L-amino acids during recrystallization: a hypothesis accounting for the origin of L-amino acids in the biosphere.
    Kojo S; Uchino H; Yoshimura M; Tanaka K
    Chem Commun (Camb); 2004 Oct; (19):2146-7. PubMed ID: 15467844
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel strategy for the determination of enantiomeric compositions of chiral compounds by chemometric analysis of the UV-vis spectra of bovine serum albumin receptor-ligand mixtures.
    Wang Y; Zhang F; Liang J; Li H; Kong J
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Oct; 68(2):279-83. PubMed ID: 17350880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of enantiomeric excess in amine derivatives with molecular self-assemblies.
    Shcherbakova EG; Minami T; Brega V; James TD; Anzenbacher P
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7130-3. PubMed ID: 25925816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetric autocatalysis. Chiral symmetry breaking and the origins of homochirality of organic molecules.
    Soai K
    Proc Jpn Acad Ser B Phys Biol Sci; 2019; 95(3):89-110. PubMed ID: 30853700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CD exciton chirality method for determination of the absolute configuration of threo-beta-aryl-beta-hydroxy-alpha-amino acid derivatives.
    Lo LC; Yang CT; Tsai CS
    J Org Chem; 2002 Feb; 67(4):1368-71. PubMed ID: 11846688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical Chirality Sensing with an Auxiliary-Free Earth-Abundant Cobalt Probe.
    De Los Santos ZA; Lynch CC; Wolf C
    Angew Chem Int Ed Engl; 2019 Jan; 58(4):1198-1202. PubMed ID: 30500091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of Schiff base adducts of phosphatidylcholine core aldehydes and aminophospholipids, amino acids, and myoglobin.
    Ravandi A; Kuksis A; Shaikh N; Jackowski G
    Lipids; 1997 Sep; 32(9):989-1001. PubMed ID: 9307942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Circularly Polarized Luminescence of Aluminum Complexes for Chiral Sensing of Amino Acid and Amino Alcohol.
    Jin Q; Wang F; Chen S; Zhou L; Jiang H; Zhang L; Liu M
    Chem Asian J; 2020 Jan; 15(2):319-324. PubMed ID: 31825169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chirality sensing with stereodynamic copper(I) complexes.
    De Los Santos ZA; Legaux NM; Wolf C
    Chirality; 2017 Nov; 29(11):663-669. PubMed ID: 28902429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.