These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33914063)

  • 1. Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in Sorghum bicolor.
    Jaikumar NS; Stutz SS; Fernandes SB; Leakey ADB; Bernacchi CJ; Brown PJ; Long SP
    J Exp Bot; 2021 Jun; 72(13):4965-4980. PubMed ID: 33914063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?
    Pignon CP; Jaiswal D; McGrath JM; Long SP
    J Exp Bot; 2017 Jan; 68(2):335-345. PubMed ID: 28110277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light, Not Age, Underlies the Maladaptation of Maize and Miscanthus Photosynthesis to Self-Shading.
    Collison RF; Raven EC; Pignon CP; Long SP
    Front Plant Sci; 2020; 11():783. PubMed ID: 32733493
    [No Abstract]   [Full Text] [Related]  

  • 4. Contrasting leaf-scale photosynthetic low-light response and its temperature dependency are key to differences in crop-scale radiation use efficiency.
    Wu A; Truong SH; McCormick R; van Oosterom EJ; Messina CD; Cooper M; Hammer GL
    New Phytol; 2024 Mar; 241(6):2435-2447. PubMed ID: 38214462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops.
    Wang Y; Chan KX; Long SP
    Plant J; 2021 Jul; 107(2):343-359. PubMed ID: 34087011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phenology of leaf quality and its within-canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests.
    Wu J; Serbin SP; Xu X; Albert LP; Chen M; Meng R; Saleska SR; Rogers A
    Glob Chang Biol; 2017 Nov; 23(11):4814-4827. PubMed ID: 28418158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity.
    Taylor SH; Long SP
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1730):. PubMed ID: 28808109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faster induction of photosynthesis increases biomass and grain yield in glasshouse-grown transgenic Sorghum bicolor overexpressing Rieske FeS.
    Ermakova M; Woodford R; Taylor Z; Furbank RT; Belide S; von Caemmerer S
    Plant Biotechnol J; 2023 Jun; 21(6):1206-1216. PubMed ID: 36789455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and photosynthetic re-acclimation to low light in C4 maize leaves that developed under high light.
    Yabiku T; Ueno O
    Ann Bot; 2019 Oct; 124(3):437-445. PubMed ID: 31127287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissection of canopy layer-specific genetic control of leaf angle in Sorghum bicolor by RNA sequencing.
    Natukunda MI; Mantilla-Perez MB; Graham MA; Liu P; Salas-Fernandez MG
    BMC Genomics; 2022 Feb; 23(1):95. PubMed ID: 35114939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf and canopy photosynthetic CO
    Piedade MT; Long SP; Junk WJ
    Oecologia; 1994 Mar; 97(2):193-201. PubMed ID: 28313928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic regulation of photosynthetic function in field-grown sorghum.
    Li T; Liu Y; Shi L; Jiang C
    Plant Physiol Biochem; 2015 Sep; 94():86-94. PubMed ID: 26057699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased bundle-sheath leakiness of CO
    Wang Y; Stutz SS; Bernacchi CJ; Boyd RA; Ort DR; Long SP
    New Phytol; 2022 Dec; 236(5):1661-1675. PubMed ID: 36098668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum (Liquidambar styraciflua) in a forest ecosystem.
    Herrick JD; Thomas RB
    Tree Physiol; 1999 Oct; 19(12):779-786. PubMed ID: 10562393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing unified theories for ozone response in C
    Li S; Moller CA; Mitchell NG; Lee D; Sacks EJ; Ainsworth EA
    Glob Chang Biol; 2022 May; 28(10):3379-3393. PubMed ID: 35092127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees.
    Rosati A; Esparza G; DeJong TM; Pearcy RW
    Tree Physiol; 1999 Mar; 19(3):173-180. PubMed ID: 12651580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.
    Jiang CD; Wang X; Gao HY; Shi L; Chow WS
    Plant Physiol; 2011 Mar; 155(3):1416-24. PubMed ID: 21245193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will future maize improvement programs leverage the canopy light-interception, photosynthetic, and biomass capacities of traditional accessions?
    Mubarak ANM; Mufeeth Mohammathu MM; Kumara ADNT
    PeerJ; 2023; 11():e15233. PubMed ID: 37131994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks.
    Campany CE; Tjoelker MG; von Caemmerer S; Duursma RA
    Plant Cell Environ; 2016 Dec; 39(12):2762-2773. PubMed ID: 27726150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.