BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33914502)

  • 1. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems.
    Bai Z; Wang P; Xu J; Wang R; Li T
    Sci Bull (Beijing); 2024 Mar; 69(5):671-687. PubMed ID: 38105159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting.
    Deng F; Chen Z; Wang C; Xiang C; Poredoš P; Wang R
    Adv Sci (Weinh); 2022 Nov; 9(33):e2204724. PubMed ID: 36209387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viability of a practical multicyclic sorption-based water harvester with improved water yield.
    Wang W; Pan Q; Xing Z; Liu X; Dai Y; Wang R; Ge T
    Water Res; 2022 Mar; 211():118029. PubMed ID: 35030362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting.
    Sun J; Ni F; Gu J; Si M; Liu D; Zhang C; Shui X; Xiao P; Chen T
    Adv Mater; 2024 Jul; 36(27):e2314175. PubMed ID: 38635920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications.
    Entezari A; Esan OC; Yan X; Wang R; An L
    Adv Mater; 2023 Oct; 35(40):e2210957. PubMed ID: 36869587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance.
    LaPotin A; Kim H; Rao SR; Wang EN
    Acc Chem Res; 2019 Jun; 52(6):1588-1597. PubMed ID: 31090396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Engineering of Sorption-Based Atmospheric Water Harvesters.
    Song Y; Zeng M; Wang X; Shi P; Fei M; Zhu J
    Adv Mater; 2024 Mar; 36(12):e2209134. PubMed ID: 37246306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.
    Xu J; Li T; Chao J; Wu S; Yan T; Li W; Cao B; Wang R
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5202-5210. PubMed ID: 31943677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Atmospheric Water Harvesting with Sunlight-Activated Sorption Ratcheting.
    Park H; Haechler I; Schnoering G; Ponte MD; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2237-2245. PubMed ID: 34974699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An encapsulation protocol of salt-based composite sorbents for atmospheric water harvesting.
    Shan H; Pan Q; Li C; Wang R
    STAR Protoc; 2022 Jun; 3(2):101255. PubMed ID: 35313710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal- and halide-free, solid-state polymeric water vapor sorbents for efficient water-sorption-driven cooling and atmospheric water harvesting.
    Wu M; Li R; Shi Y; Altunkaya M; Aleid S; Zhang C; Wang W; Wang P
    Mater Horiz; 2021 May; 8(5):1518-1527. PubMed ID: 34846460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorbents for Atmospheric Water Harvesting: From Design Principles to Applications.
    Shi W; Guan W; Lei C; Yu G
    Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202211267. PubMed ID: 35960199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.
    Paulauskiene T
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9981-9991. PubMed ID: 29376214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent Organic Frameworks for Extracting Water from Air.
    Sun C; Sheng D; Wang B; Feng X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303378. PubMed ID: 36971401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hygroscopic-Microgels-Enabled Rapid Water Extraction from Arid Air.
    Guan W; Lei C; Guo Y; Shi W; Yu G
    Adv Mater; 2024 Mar; 36(12):e2207786. PubMed ID: 36239247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates.
    Lu H; Shi W; Zhang JH; Chen AC; Guan W; Lei C; Greer JR; Boriskina SV; Yu G
    Adv Mater; 2022 Sep; 34(37):e2205344. PubMed ID: 35901232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms.
    Wu B; Wan J; Zhang Y; Pan B; Lo IMC
    Environ Sci Technol; 2020 Jan; 54(1):50-66. PubMed ID: 31804806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Atmospheric Water Harvesting over a Wide RH Range Enabled by Super Hygroscopic Composite Aerogels.
    Zhang X; Qu H; Li X; Zhang L; Zhang Y; Yang J; Zhou M; Suresh L; Liu S; Tan SC
    Adv Mater; 2024 Jan; ():e2310219. PubMed ID: 38219071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.