These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 33914601)

  • 41. Calcific aortic valve disease: novel insights into nitric oxide signalling.
    Kraler S; Garg V; Akhmedov A
    Eur Heart J; 2022 May; 43(17):1665-1667. PubMed ID: 35187573
    [No Abstract]   [Full Text] [Related]  

  • 42. Transcatheter aortic valve implantation: status and challenges.
    Fishbein GA; Schoen FJ; Fishbein MC
    Cardiovasc Pathol; 2014; 23(2):65-70. PubMed ID: 24183003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications.
    Greenberg HZE; Zhao G; Shah AM; Zhang M
    Cardiovasc Res; 2022 May; 118(6):1433-1451. PubMed ID: 33881501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unloading the Stenotic Path to Identifying Medical Therapy for Calcific Aortic Valve Disease: Barriers and Opportunities.
    Lindman BR; Merryman WD
    Circulation; 2021 Apr; 143(15):1455-1457. PubMed ID: 33844581
    [No Abstract]   [Full Text] [Related]  

  • 45. Novel indices in calcific aortic valve stenosis.
    Antoniou CK; Chrysohoou C; Brili S; Pitsavos C; Stefanadis C
    Hellenic J Cardiol; 2012; 53(4):310-7. PubMed ID: 22796818
    [No Abstract]   [Full Text] [Related]  

  • 46. Outcomes of surgical aortic valve replacement: the benchmark for percutaneous therapies.
    Bajona P; Suri RM; Greason KL; Schaff HV
    Prog Cardiovasc Dis; 2014; 56(6):619-24. PubMed ID: 24838137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical factors, but not C-reactive protein, predict progression of calcific aortic-valve disease: the Cardiovascular Health Study.
    Novaro GM; Katz R; Aviles RJ; Gottdiener JS; Cushman M; Psaty BM; Otto CM; Griffin BP
    J Am Coll Cardiol; 2007 Nov; 50(20):1992-8. PubMed ID: 17996566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and Characterization of Primary Rat Valve Interstitial Cells: A New Model to Study Aortic Valve Calcification.
    Lin C; Zhu D; Markby G; Corcoran BM; Farquharson C; Macrae VE
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286439
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcific Aortic Valve Disease in Familial Hypercholesterolemia: The LDL-Density-Gene Effect.
    Rajamannan NM
    J Am Coll Cardiol; 2015 Dec; 66(24):2696-2698. PubMed ID: 26700831
    [No Abstract]   [Full Text] [Related]  

  • 50. Insights into the use of biomarkers in calcific aortic valve disease.
    Beckmann E; Grau JB; Sainger R; Poggio P; Ferrari G
    J Heart Valve Dis; 2010 Jul; 19(4):441-52. PubMed ID: 20845891
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calcification in Aortic Stenosis: The Skeleton Key.
    Pawade TA; Newby DE; Dweck MR
    J Am Coll Cardiol; 2015 Aug; 66(5):561-77. PubMed ID: 26227196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aortic stenosis and the pulse contour: A true marker of severity?
    Eleid MF; Nishimura RA
    Catheter Cardiovasc Interv; 2020 May; 95(6):1235-1239. PubMed ID: 31868287
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Association between calcific aortic stenosis and hypercholesterolemia: is there a need for a randomized controlled trial of cholesterol-lowering therapy?
    Chui MC; Newby DE; Panarelli M; Bloomfield P; Boon NA
    Clin Cardiol; 2001 Jan; 24(1):52-5. PubMed ID: 11195607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aortic valve calcification in chronic kidney disease.
    Rattazzi M; Bertacco E; Del Vecchio A; Puato M; Faggin E; Pauletto P
    Nephrol Dial Transplant; 2013 Dec; 28(12):2968-76. PubMed ID: 24097800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The response to valve injury. A paradigm to understand the pathogenesis of heart valve disease.
    Li C; Xu S; Gotlieb AI
    Cardiovasc Pathol; 2011; 20(3):183-90. PubMed ID: 21075649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcific Aortic Valve Disease: Part 1--Molecular Pathogenetic Aspects, Hemodynamics, and Adaptive Feedbacks.
    Pasipoularides A
    J Cardiovasc Transl Res; 2016 Apr; 9(2):102-18. PubMed ID: 26891845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of Prosthetic Valve Function After TAVR.
    Pislaru SV; Nkomo VT; Sandhu GS
    JACC Cardiovasc Imaging; 2016 Feb; 9(2):193-206. PubMed ID: 26846938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation of early calcific aortic valve disease in a 3D platform: A role for myofibroblast differentiation.
    Hjortnaes J; Goettsch C; Hutcheson JD; Camci-Unal G; Lax L; Scherer K; Body S; Schoen FJ; Kluin J; Khademhosseini A; Aikawa E
    J Mol Cell Cardiol; 2016 May; 94():13-20. PubMed ID: 26996755
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The global burden of aortic stenosis.
    Thaden JJ; Nkomo VT; Enriquez-Sarano M
    Prog Cardiovasc Dis; 2014; 56(6):565-71. PubMed ID: 24838132
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metformin alleviates the calcification of aortic valve interstitial cells through activating the PI3K/AKT pathway in an AMPK dependent way.
    En Q; Zeping H; Yuetang W; Xu W; Wei W
    Mol Med; 2021 Dec; 27(1):156. PubMed ID: 34895136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.