BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33914688)

  • 1. Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis.
    Atrsaei A; Dadashi F; Mariani B; Gonzenbach R; Aminian K
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4217-4228. PubMed ID: 33914688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium.
    Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Kirk C; Soltani A; Küderle A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Eskofier B; Fernstad S; Froehlich M; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Del Din S;
    J Neuroeng Rehabil; 2023 Jun; 20(1):78. PubMed ID: 37316858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms for Walking Speed Estimation Using a Lower-Back-Worn Inertial Sensor: A Cross-Validation on Speed Ranges.
    Soltani A; Aminian K; Mazza C; Cereatti A; Palmerini L; Bonci T; Paraschiv-Ionescu A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1955-1964. PubMed ID: 34506286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial.
    Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I
    JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis.
    McGinnis RS; Mahadevan N; Moon Y; Seagers K; Sheth N; Wright JA; DiCristofaro S; Silva I; Jortberg E; Ceruolo M; Pindado JA; Sosnoff J; Ghaffari R; Patel S
    PLoS One; 2017; 12(6):e0178366. PubMed ID: 28570570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study.
    Kluge F; Brand YE; Micó-Amigo ME; Bertuletti S; D'Ascanio I; Gazit E; Bonci T; Kirk C; Küderle A; Palmerini L; Paraschiv-Ionescu A; Salis F; Soltani A; Ullrich M; Alcock L; Aminian K; Becker C; Brown P; Buekers J; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; Echevarria C; Eskofier B; Evers J; Garcia-Aymerich J; Hache T; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Koch S; Maetzler W; Megaritis D; Niessen M; Perlman O; Schwickert L; Scott K; Sharrack B; Singleton D; Vereijken B; Vogiatzis I; Yarnall A; Rochester L; Mazzà C; Del Din S; Mueller A
    JMIR Form Res; 2024 May; 8():e50035. PubMed ID: 38691395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-living and laboratory gait characteristics in patients with multiple sclerosis.
    Storm FA; Nair KPS; Clarke AJ; Van der Meulen JM; Mazzà C
    PLoS One; 2018; 13(5):e0196463. PubMed ID: 29715279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device.
    Kirk C; Küderle A; Micó-Amigo ME; Bonci T; Paraschiv-Ionescu A; Ullrich M; Soltani A; Gazit E; Salis F; Alcock L; Aminian K; Becker C; Bertuletti S; Brown P; Buckley E; Cantu A; Carsin AE; Caruso M; Caulfield B; Cereatti A; Chiari L; D'Ascanio I; Garcia-Aymerich J; Hansen C; Hausdorff JM; Hiden H; Hume E; Keogh A; Kluge F; Koch S; Maetzler W; Megaritis D; Mueller A; Niessen M; Palmerini L; Schwickert L; Scott K; Sharrack B; Sillén H; Singleton D; Vereijken B; Vogiatzis I; Yarnall AJ; Rochester L; Mazzà C; Eskofier BM; Del Din S;
    Sci Rep; 2024 Jan; 14(1):1754. PubMed ID: 38243008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy.
    Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-World Gait Speed Estimation Using Wrist Sensor: A Personalized Approach.
    Soltani A; Dejnabadi H; Savary M; Aminian K
    IEEE J Biomed Health Inform; 2020 Mar; 24(3):658-668. PubMed ID: 31059461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy and comparison of sensor-based gait speed estimations under standardized and daily life conditions in children undergoing rehabilitation.
    Rast FM; Aschwanden S; Werner C; Demkó L; Labruyère R
    J Neuroeng Rehabil; 2022 Oct; 19(1):105. PubMed ID: 36195950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking-speed estimation using a single inertial measurement unit for the older adults.
    Byun S; Lee HJ; Han JW; Kim JS; Choi E; Kim KW
    PLoS One; 2019; 14(12):e0227075. PubMed ID: 31877181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing different methods of gait speed estimation using wearable sensors in individuals with varying levels of mobility impairments.
    Nunez EH; Parhar S; Iwata I; Setoguchi S; Chen H; Daneault JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3792-3798. PubMed ID: 33018827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-world speed estimation using single trunk IMU: methodological challenges for impaired gait patterns
    Paraschiv-Ionescu A; Soltani A; Aminian K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4596-4599. PubMed ID: 33019017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Laboratory and Daily-Life Gait Speed Assessment during ON and OFF States in Parkinson's Disease.
    Corrà MF; Atrsaei A; Sardoreira A; Hansen C; Aminian K; Correia M; Vila-Chã N; Maetzler W; Maia L
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking-Speed-Adaptive Gait Phase Estimation for Wearable Robots.
    Choi S; Ko C; Kong K
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning based estimation of dynamic balance and gait adaptability in persons with neurological diseases using inertial sensors.
    Liuzzi P; Carpinella I; Anastasi D; Gervasoni E; Lencioni T; Bertoni R; Carrozza MC; Cattaneo D; Ferrarin M; Mannini A
    Sci Rep; 2023 May; 13(1):8640. PubMed ID: 37244933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Hickey A; Del Din S; Rochester L; Godfrey A
    Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EarGait: Estimation of Temporal Gait Parameters from Hearing Aid Integrated Inertial Sensors.
    Seifer AK; Dorschky E; Küderle A; Moradi H; Hannemann R; Eskofier BM
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.