These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33914784)
1. The robust estimation of examinee ability based on the four-parameter logistic model when guessing and carelessness responses exist. Jian X; Buyun D; Yuanping D PLoS One; 2021; 16(4):e0250268. PubMed ID: 33914784 [TBL] [Abstract][Full Text] [Related]
2. The Bayesian Expectation-Maximization-Maximization for the 3PLM. Guo S; Zheng C Front Psychol; 2019; 10():1175. PubMed ID: 31214067 [TBL] [Abstract][Full Text] [Related]
3. Robust estimation of the hierarchical model for responses and response times. Ranger J; Wolgast A; Kuhn JT Br J Math Stat Psychol; 2019 Feb; 72(1):83-107. PubMed ID: 30051905 [TBL] [Abstract][Full Text] [Related]
4. Shrinkage estimation of the three-parameter logistic model. Battauz M; Bellio R Br J Math Stat Psychol; 2021 Nov; 74(3):591-609. PubMed ID: 33734439 [TBL] [Abstract][Full Text] [Related]
5. A mixture model for responses and response times with a higher-order ability structure to detect rapid guessing behaviour. Lu J; Wang C; Zhang J; Tao J Br J Math Stat Psychol; 2020 May; 73(2):261-288. PubMed ID: 31385609 [TBL] [Abstract][Full Text] [Related]
6. Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework. Meng X; Xu G; Zhang J; Tao J Br J Math Stat Psychol; 2020 Nov; 73 Suppl 1():51-82. PubMed ID: 31552688 [TBL] [Abstract][Full Text] [Related]
7. A Comparison of Robust Likelihood Estimators to Mitigate Bias From Rapid Guessing. Rios JA Appl Psychol Meas; 2022 May; 46(3):236-249. PubMed ID: 35528268 [TBL] [Abstract][Full Text] [Related]
8. Correction: The robust estimation of examinee ability based on the four-parameter logistic model when guessing and carelessness responses exist. Jian X; Dai B; Deng Y PLoS One; 2021; 16(9):e0258023. PubMed ID: 34555111 [TBL] [Abstract][Full Text] [Related]
9. A targeted maximum likelihood estimator of a causal effect on a bounded continuous outcome. Gruber S; van der Laan MJ Int J Biostat; 2010; 6(1):Article 26. PubMed ID: 21731529 [TBL] [Abstract][Full Text] [Related]
10. On the asymptotic standard error of a class of robust estimators of ability in dichotomous item response models. Magis D Br J Math Stat Psychol; 2014 Nov; 67(3):430-50. PubMed ID: 24016181 [TBL] [Abstract][Full Text] [Related]
11. Robust maximum marginal likelihood (RMML) estimation for item response theory models. Hong MR; Cheng Y Behav Res Methods; 2019 Apr; 51(2):573-588. PubMed ID: 30350024 [TBL] [Abstract][Full Text] [Related]
12. On Latent Trait Estimation in Multidimensional Compensatory Item Response Models. Wang C Psychometrika; 2015 Jun; 80(2):428-49. PubMed ID: 24604245 [TBL] [Abstract][Full Text] [Related]
13. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization. Liu Y; Zhang Y; He B; Li Z; Lang X; Liang H; Chen J Ultrason Imaging; 2022 Jul; 44(4):142-160. PubMed ID: 35674146 [TBL] [Abstract][Full Text] [Related]
14. Mixture-modelling-based Bayesian MH-RM algorithm for the multidimensional 4PLM. Guo S; Chen Y; Zheng C; Li G Br J Math Stat Psychol; 2023 Nov; 76(3):585-604. PubMed ID: 36733219 [TBL] [Abstract][Full Text] [Related]
15. Rasch Model Parameter Estimation via the Elastic Net. Paolino JP J Appl Meas; 2015; 16(4):353-64. PubMed ID: 26771565 [TBL] [Abstract][Full Text] [Related]
16. Analysis of counts with two latent classes, with application to risk assessment based on physician-visit records of cancer survivors. Wang H; Hu XJ; McBride ML; Spinelli JJ Biostatistics; 2014 Apr; 15(2):384-97. PubMed ID: 24297607 [TBL] [Abstract][Full Text] [Related]
18. The Effect of Upper and Lower Asymptotes of IRT Models on Computerized Adaptive Testing. Cheng Y; Liu C Appl Psychol Meas; 2015 Oct; 39(7):551-565. PubMed ID: 29881026 [TBL] [Abstract][Full Text] [Related]
19. Correction for Item Response Theory Latent Trait Measurement Error in Linear Mixed Effects Models. Wang C; Xu G; Zhang X Psychometrika; 2019 Sep; 84(3):673-700. PubMed ID: 31183670 [TBL] [Abstract][Full Text] [Related]
20. A hierarchical latent response model for inferences about examinee engagement in terms of guessing and item-level non-response. Ulitzsch E; von Davier M; Pohl S Br J Math Stat Psychol; 2020 Nov; 73 Suppl 1():83-112. PubMed ID: 31709521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]