BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33914794)

  • 1. Base-excess chloride; the best approach to evaluate the effect of chloride on the acid-base status: A retrospective study.
    Gucyetmez B; Tuzuner F; Atalan HK; Sezerman U; Gucyetmez K; Telci L
    PLoS One; 2021; 16(4):e0250274. PubMed ID: 33914794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of sodium-chloride difference and corrected anion gap as surrogates of Stewart variables in critically ill patients.
    Mallat J; Barrailler S; Lemyze M; Pepy F; Gasan G; Tronchon L; Thevenin D
    PLoS One; 2013; 8(2):e56635. PubMed ID: 23418590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unmeasured anions in critically ill patients: can they predict mortality?
    Rocktaeschel J; Morimatsu H; Uchino S; Bellomo R
    Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The base excess gap is not a valid tool for the quantification of unmeasured ions in cardiac surgical patients: a retrospective observational study.
    Agrafiotis M; Sileli M; Ampatzidou F; Keklikoglou I; Panousis P
    Eur J Anaesthesiol; 2013 Nov; 30(11):678-84. PubMed ID: 23867780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stewart analysis of apparently normal acid-base state in the critically ill.
    Moviat M; van den Boogaard M; Intven F; van der Voort P; van der Hoeven H; Pickkers P
    J Crit Care; 2013 Dec; 28(6):1048-54. PubMed ID: 23910568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid-base disorders.
    Story DA; Morimatsu H; Bellomo R
    Br J Anaesth; 2004 Jan; 92(1):54-60. PubMed ID: 14665553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stewart Acid-Base: A Simplified Bedside Approach.
    Story DA
    Anesth Analg; 2016 Aug; 123(2):511-5. PubMed ID: 27140683
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparison of a new simplified acid-base tool to the original Stewart-Figge approach: a study on cardiac surgical patients.
    Agrafiotis M; Mpliamplias D; Papathanassiou M; Ampatzidou F; Drossos G
    J Anesth; 2018 Aug; 32(4):499-505. PubMed ID: 29725827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-lactate strong ion difference: a clearer picture.
    Gucyetmez B; Atalan HK
    J Anesth; 2016 Jun; 30(3):391-6. PubMed ID: 26961820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of continuous veno-venous hemofiltration on acid-base balance.
    Rocktäschel J; Morimatsu H; Uchino S; Ronco C; Bellomo R
    Int J Artif Organs; 2003 Jan; 26(1):19-25. PubMed ID: 12602465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the chloride:sodium ratio on acid-base statusand mortality in septic patients.
    Atalan HK; Güçyetmez B
    Turk J Med Sci; 2017 Apr; 47(2):435-442. PubMed ID: 28425228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of PaCO2 variation on standard base excess value in critically ill patients.
    Park M; Maciel AT; Noritomi DT; Pontes de Azevedo LC; Taniguchi LU; da Cruz Neto LM
    J Crit Care; 2009 Dec; 24(4):484-91. PubMed ID: 19427755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap.
    Story DA; Poustie S; Bellomo R
    Anaesthesia; 2002 Nov; 57(11):1109-14. PubMed ID: 12428637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining metabolic acidosis in patients with septic shock using Stewart approach.
    Mallat J; Michel D; Salaun P; Thevenin D; Tronchon L
    Am J Emerg Med; 2012 Mar; 30(3):391-8. PubMed ID: 21277142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit.
    Balasubramanyan N; Havens PL; Hoffman GM
    Crit Care Med; 1999 Aug; 27(8):1577-81. PubMed ID: 10470767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid-base disturbances in nephrotic syndrome: analysis using the CO
    Kasagi T; Imai H; Miura N; Suzuki K; Yoshino M; Nobata H; Nagai T; Banno S
    Clin Exp Nephrol; 2017 Oct; 21(5):866-876. PubMed ID: 28289910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simplified quantitative acid-base approach for patients with acute respiratory diseases.
    Agrafiotis M; Papathanassiou M; Karachristos C; Kerezidou E; Tryfon S; Serasli E; Chloros D
    J Clin Monit Comput; 2020 Feb; 34(1):21-28. PubMed ID: 30953221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of acid-base status in patients admitted to ED-physicochemical vs traditional approaches.
    Antonogiannaki EM; Mitrouska I; Amargianitakis V; Georgopoulos D
    Am J Emerg Med; 2015 Mar; 33(3):378-82. PubMed ID: 25592251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of sodium-chloride difference and chloride-sodium ratio as strong ion difference surrogates in the evaluation of metabolic acidosis in critically ill patients.
    Nagaoka D; Nassar Junior AP; Maciel AT; Taniguchi LU; Noritomi DT; Azevedo LC; Neto LM; Park M
    J Crit Care; 2010 Sep; 25(3):525-31. PubMed ID: 20381294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acid-base disorders analysis with the use of the Stewart approach in patients with sepsis treated in an intensive care unit.
    Szrama J; Smuszkiewicz P
    Anaesthesiol Intensive Ther; 2016; 48(3):180-4. PubMed ID: 27000203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.