These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 33915166)
1. Vulnerability of cholecystokinin-expressing GABAergic interneurons in the unilateral intrahippocampal kainate mouse model of temporal lobe epilepsy. Kang YJ; Clement EM; Park IH; Greenfield LJ; Smith BN; Lee SH Exp Neurol; 2021 Aug; 342():113724. PubMed ID: 33915166 [TBL] [Abstract][Full Text] [Related]
2. Reduced Cholecystokinin-Expressing Interneuron Input Contributes to Disinhibition of the Hippocampal CA2 Region in a Mouse Model of Temporal Lobe Epilepsy. Whitebirch AC; Santoro B; Barnett A; Lisgaras CP; Scharfman HE; Siegelbaum SA J Neurosci; 2023 Oct; 43(41):6930-6949. PubMed ID: 37643861 [TBL] [Abstract][Full Text] [Related]
3. Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. Wyeth MS; Zhang N; Mody I; Houser CR J Neurosci; 2010 Jun; 30(26):8993-9006. PubMed ID: 20592220 [TBL] [Abstract][Full Text] [Related]
4. Target-selectivity of parvalbumin-positive interneurons in layer II of medial entorhinal cortex in normal and epileptic animals. Armstrong C; Wang J; Yeun Lee S; Broderick J; Bezaire MJ; Lee SH; Soltesz I Hippocampus; 2016 Jun; 26(6):779-93. PubMed ID: 26663222 [TBL] [Abstract][Full Text] [Related]
5. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1. Nagode DA; Tang AH; Yang K; Alger BE J Physiol; 2014 Jan; 592(1):103-23. PubMed ID: 24190932 [TBL] [Abstract][Full Text] [Related]
6. Activation of hypoactive parvalbumin-positive fast-spiking interneuron restores dentate inhibition to prevent epileptiform activity in the mouse intrahippocampal kainate model of temporal lobe epilepsy. Lee SH; Kang YJ; Smith BN bioRxiv; 2024 Apr; ():. PubMed ID: 38645248 [TBL] [Abstract][Full Text] [Related]
7. Epileptogenesis and chronic seizures in a mouse model of temporal lobe epilepsy are associated with distinct EEG patterns and selective neurochemical alterations in the contralateral hippocampus. Arabadzisz D; Antal K; Parpan F; Emri Z; Fritschy JM Exp Neurol; 2005 Jul; 194(1):76-90. PubMed ID: 15899245 [TBL] [Abstract][Full Text] [Related]
8. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728 [TBL] [Abstract][Full Text] [Related]
9. Early alterations in hippocampal perisomatic GABAergic synapses and network oscillations in a mouse model of Alzheimer's disease amyloidosis. Hollnagel JO; Elzoheiry S; Gorgas K; Kins S; Beretta CA; Kirsch J; Kuhse J; Kann O; Kiss E PLoS One; 2019; 14(1):e0209228. PubMed ID: 30645585 [TBL] [Abstract][Full Text] [Related]
10. The critical role of persistent sodium current in hippocampal gamma oscillations. Kang YJ; Clement EM; Sumsky SL; Xiang Y; Park IH; Santaniello S; Greenfield LJ; Garcia-Rill E; Smith BN; Lee SH Neuropharmacology; 2020 Jan; 162():107787. PubMed ID: 31550457 [TBL] [Abstract][Full Text] [Related]
11. Cannabidiol exerts antiepileptic effects by restoring hippocampal interneuron functions in a temporal lobe epilepsy model. Khan AA; Shekh-Ahmad T; Khalil A; Walker MC; Ali AB Br J Pharmacol; 2018 Jun; 175(11):2097-2115. PubMed ID: 29574880 [TBL] [Abstract][Full Text] [Related]
12. Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Bouilleret V; Ridoux V; Depaulis A; Marescaux C; Nehlig A; Le Gal La Salle G Neuroscience; 1999 Mar; 89(3):717-29. PubMed ID: 10199607 [TBL] [Abstract][Full Text] [Related]
13. Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. Drexel M; Romanov RA; Wood J; Weger S; Heilbronn R; Wulff P; Tasan RO; Harkany T; Sperk G J Neurosci; 2017 Aug; 37(34):8166-8179. PubMed ID: 28733354 [TBL] [Abstract][Full Text] [Related]
14. Canonical Wnt activator Chir99021 prevents epileptogenesis in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Mardones MD; Rostam KD; Nickerson MC; Gupta K Exp Neurol; 2024 Jun; 376():114767. PubMed ID: 38522659 [TBL] [Abstract][Full Text] [Related]
15. Integration of the CA2 region in the hippocampal network during epileptogenesis. Kilias A; Tulke S; Barheier N; Ruther P; Häussler U Hippocampus; 2023 Mar; 33(3):223-240. PubMed ID: 36421040 [TBL] [Abstract][Full Text] [Related]
16. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Bankstahl M; Klein S; Römermann K; Löscher W Neuropharmacology; 2016 Oct; 109():183-195. PubMed ID: 27288003 [TBL] [Abstract][Full Text] [Related]
17. Local circuit synaptic interactions between CA1 pyramidal cells and interneurons in the kainate-lesioned hyperexcitable hippocampus. Nakajima S; Franck JE; Bilkey D; Schwartzkroin PA Hippocampus; 1991 Jan; 1(1):67-78. PubMed ID: 1669343 [TBL] [Abstract][Full Text] [Related]
18. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus. Wittner L; Eross L; Czirják S; Halász P; Freund TF; Maglóczky Z Brain; 2005 Jan; 128(Pt 1):138-52. PubMed ID: 15548550 [TBL] [Abstract][Full Text] [Related]
19. The role of subicular VIP-expressing interneurons on seizure dynamics in the intrahippocampal kainic acid model of temporal lobe epilepsy. Rahimi S; Salami P; Matulewicz P; Schmuck A; Bukovac A; Ramos-Prats A; Tasan RO; Drexel M Exp Neurol; 2023 Dec; 370():114580. PubMed ID: 37884187 [TBL] [Abstract][Full Text] [Related]
20. Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals. Rempe DA; Bertram EH; Williamson JM; Lothman EW J Neurophysiol; 1997 Sep; 78(3):1504-15. PubMed ID: 9310439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]