These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33915383)
1. Tumor classification in automated breast ultrasound (ABUS) based on a modified extracting feature network. Zhuang Z; Ding W; Zhuang S; Joseph Raj AN; Wang J; Zhou W; Wei C Comput Med Imaging Graph; 2021 Jun; 90():101925. PubMed ID: 33915383 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network. Hejduk P; Marcon M; Unkelbach J; Ciritsis A; Rossi C; Borkowski K; Boss A Eur Radiol; 2022 Jul; 32(7):4868-4878. PubMed ID: 35147776 [TBL] [Abstract][Full Text] [Related]
3. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning. Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580 [TBL] [Abstract][Full Text] [Related]
5. Breast tumor segmentation in 3D automatic breast ultrasound using Mask scoring R-CNN. Lei Y; He X; Yao J; Wang T; Wang L; Li W; Curran WJ; Liu T; Xu D; Yang X Med Phys; 2021 Jan; 48(1):204-214. PubMed ID: 33128230 [TBL] [Abstract][Full Text] [Related]
6. Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images. Ma H; Tian R; Li H; Sun H; Lu G; Liu R; Wang Z Biomed Eng Online; 2021 Nov; 20(1):112. PubMed ID: 34794443 [TBL] [Abstract][Full Text] [Related]
7. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Zhou Y; Chen H; Li Y; Liu Q; Xu X; Wang S; Yap PT; Shen D Med Image Anal; 2021 May; 70():101918. PubMed ID: 33676100 [TBL] [Abstract][Full Text] [Related]
8. Dilated densely connected U-Net with uncertainty focus loss for 3D ABUS mass segmentation. Cao X; Chen H; Li Y; Peng Y; Wang S; Cheng L Comput Methods Programs Biomed; 2021 Sep; 209():106313. PubMed ID: 34364182 [TBL] [Abstract][Full Text] [Related]
9. Automatic breast ultrasound (ABUS) tumor segmentation based on global and local feature fusion. Li Y; Ren Y; Cheng Z; Sun J; Pan P; Chen H Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38759673 [TBL] [Abstract][Full Text] [Related]
10. Study on automatic detection and classification of breast nodule using deep convolutional neural network system. Wang F; Liu X; Yuan N; Qian B; Ruan L; Yin C; Jin C J Thorac Dis; 2020 Sep; 12(9):4690-4701. PubMed ID: 33145042 [TBL] [Abstract][Full Text] [Related]
11. 3D Inception U-net with Asymmetric Loss for Cancer Detection in Automated Breast Ultrasound. Wang Y; Qin C; Lin C; Lin D; Xu M; Luo X; Wang T; Li A; Ni D Med Phys; 2020 Nov; 47(11):5582-5591. PubMed ID: 33459385 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional automated breast ultrasound: Technical aspects and first results. Vourtsis A Diagn Interv Imaging; 2019 Oct; 100(10):579-592. PubMed ID: 30962169 [TBL] [Abstract][Full Text] [Related]
13. Deeply-Supervised Networks With Threshold Loss for Cancer Detection in Automated Breast Ultrasound. Wang Y; Wang N; Xu M; Yu J; Qin C; Luo X; Yang X; Wang T; Li A; Ni D IEEE Trans Med Imaging; 2020 Apr; 39(4):866-876. PubMed ID: 31442972 [TBL] [Abstract][Full Text] [Related]
14. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images. Tasnim J; Hasan MK Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056017 [No Abstract] [Full Text] [Related]
15. FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images. Cui W; Peng Y; Yuan G; Cao W; Cao Y; Lu Z; Ni X; Yan Z; Zheng J Med Phys; 2022 Jan; 49(1):144-157. PubMed ID: 34766623 [TBL] [Abstract][Full Text] [Related]
16. Diagnostic Performance of Automated Breast Ultrasound in Differentiating Benign and Malignant Breast Masses in Asymptomatic Women: A Comparison Study With Handheld Ultrasound. Niu L; Bao L; Zhu L; Tan Y; Xu X; Shan Y; Liu J; Zhu Q; Jiang C; Shen Y J Ultrasound Med; 2019 Nov; 38(11):2871-2880. PubMed ID: 30912178 [TBL] [Abstract][Full Text] [Related]
17. 3D tumor detection in automated breast ultrasound using deep convolutional neural network. Li Y; Wu W; Chen H; Cheng L; Wang S Med Phys; 2020 Nov; 47(11):5669-5680. PubMed ID: 32970838 [TBL] [Abstract][Full Text] [Related]
18. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging. Chen JH; Lee YW; Chan SW; Yeh DC; Chang RF Ultrasound Med Biol; 2016 May; 42(5):1211-20. PubMed ID: 26831342 [TBL] [Abstract][Full Text] [Related]
19. Auto-DenseUNet: Searchable neural network architecture for mass segmentation in 3D automated breast ultrasound. Cao X; Chen H; Li Y; Peng Y; Zhou Y; Cheng L; Liu T; Shen D Med Image Anal; 2022 Nov; 82():102589. PubMed ID: 36095905 [TBL] [Abstract][Full Text] [Related]
20. Utility and Diagnostic Performance of Automated Breast Ultrasound System in Evaluating Pure Non-Mass Enhancement on Breast Magnetic Resonance Imaging. Kwon BR; Chang JM; Kim SY; Lee SH; Shin SU; Yi A; Cho N; Moon WK Korean J Radiol; 2020 Nov; 21(11):1210-1219. PubMed ID: 32729267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]