These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33916231)

  • 1. Continuous Sign Language Recognition through a Context-Aware Generative Adversarial Network.
    Papastratis I; Dimitropoulos K; Daras P
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeleton-based Chinese sign language recognition and generation for bidirectional communication between deaf and hearing people.
    Xiao Q; Qin M; Yin Y
    Neural Netw; 2020 May; 125():41-55. PubMed ID: 32070855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UltrasonicGS: A Highly Robust Gesture and Sign Language Recognition Method Based on Ultrasonic Signals.
    Wang Y; Hao Z; Dang X; Zhang Z; Li M
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-modal knowledge distillation for continuous sign language recognition.
    Gao L; Shi P; Hu L; Feng J; Zhu L; Wan L; Feng W
    Neural Netw; 2024 Nov; 179():106587. PubMed ID: 39111160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.
    Cheng J; Chen X; Liu A; Peng H
    Sensors (Basel); 2015 Sep; 15(9):23303-24. PubMed ID: 26389907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.
    R E; K S
    J Med Syst; 2017 Sep; 41(11):175. PubMed ID: 28940043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Spatio-Temporal Continuous Sign Language Recognition Using an Attentive Multi-Feature Network.
    Aditya W; Shih TK; Thaipisutikul T; Fitriajie AS; Gochoo M; Utaminingrum F; Lin CY
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Attention-Enhanced Multi-Scale and Dual Sign Language Recognition Network Based on a Graph Convolution Network.
    Meng L; Li R
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Component-Based Vocabulary-Extensible Sign Language Gesture Recognition Framework.
    Wei S; Chen X; Yang X; Cao S; Zhang X
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27104534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. American Sign Language Recognition and Translation Using Perception Neuron Wearable Inertial Motion Capture System.
    Gu Y; Oku H; Todoh M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic mode entropy: an enhanced classification means for automated Greek Sign Language gesture recognition.
    Kosmidou VE; Hadjileontiadis LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5057-60. PubMed ID: 19163853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. American Sign Language Recognition Using Leap Motion Controller with Machine Learning Approach.
    Chong TW; Lee BG
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30347776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. American Sign Language Words Recognition of Skeletal Videos Using Processed Video Driven Multi-Stacked Deep LSTM.
    Abdullahi SB; Chamnongthai K
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Attention-Based 3D Graph Convolutional Neural Network for Sign Language Recognition.
    Al-Hammadi M; Bencherif MA; Alsulaiman M; Muhammad G; Mekhtiche MA; Abdul W; Alohali YA; Alrayes TS; Mathkour H; Faisal M; Algabri M; Altaheri H; Alfakih T; Ghaleb H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-cue temporal modeling for skeleton-based sign language recognition.
    Özdemir O; Baytaş İM; Akarun L
    Front Neurosci; 2023; 17():1148191. PubMed ID: 37090797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic sign language analysis: a survey and the future beyond lexical meaning.
    Ong SC; Ranganath S
    IEEE Trans Pattern Anal Mach Intell; 2005 Jun; 27(6):873-91. PubMed ID: 15943420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal feature-extraction techniques for isolated gesture recognition in Arabic sign language.
    Shanableh T; Assaleh K; Al-Rousan M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Jun; 37(3):641-50. PubMed ID: 17550118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using sample entropy for automated sign language recognition on sEMG and accelerometer data.
    Kosmidou VE; Hadjileontiadis LI
    Med Biol Eng Comput; 2010 Mar; 48(3):255-67. PubMed ID: 19943194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gloss Prior Guided Visual Feature Learning for Continuous Sign Language Recognition.
    Guo L; Xue W; Liu B; Zhang K; Yuan T; Metaxas D
    IEEE Trans Image Process; 2024; 33():3486-3495. PubMed ID: 38814773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensor Fusion of Motion-Based Sign Language Interpretation with Deep Learning.
    Lee BG; Chong TW; Chung WY
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.