BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33916491)

  • 1. Reduced Thiamine Availability and Hyperglycemia Impair Thiamine Transport in Renal Glomerular Cells through Modulation of Thiamine Transporter 2.
    Mazzeo A; Barutta F; Bellucci L; Trento M; Gruden G; Porta M; Beltramo E
    Biomedicines; 2021 Apr; 9(4):. PubMed ID: 33916491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy.
    Beltramo E; Mazzeo A; Lopatina T; Trento M; Porta M
    Diab Vasc Dis Res; 2020; 17(1):1479164119878427. PubMed ID: 31726874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transketolase Activity but not Thiamine Membrane Transport Change in Response to Hyperglycaemia and Kidney Dysfunction.
    Chalásová K; Pácal L; Pleskačová A; Knopfová L; Řehořová J; Tomandlová M; Tomandl J; Kaňková K
    Exp Clin Endocrinol Diabetes; 2018 Apr; 126(4):255-262. PubMed ID: 28950391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Down-regulation of thiamine transporter THTR2 gene expression in breast cancer and its association with resistance to apoptosis.
    Liu S; Huang H; Lu X; Golinski M; Comesse S; Watt D; Grossman RB; Moscow JA
    Mol Cancer Res; 2003 Jul; 1(9):665-73. PubMed ID: 12861052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose.
    Berrone E; Beltramo E; Solimine C; Ape AU; Porta M
    J Biol Chem; 2006 Apr; 281(14):9307-13. PubMed ID: 16452468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells.
    Liu S; Stromberg A; Tai HH; Moscow JA
    Mol Cancer Res; 2004 Aug; 2(8):477-87. PubMed ID: 15328374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential role of thiamine (vitamin B1) in diabetic complications.
    Thornalley PJ
    Curr Diabetes Rev; 2005 Aug; 1(3):287-98. PubMed ID: 18220605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-charged thiamine analogs as inhibitors of enzyme transketolase.
    Thomas AA; De Meese J; Le Huerou Y; Boyd SA; Romoff TT; Gonzales SS; Gunawardana I; Kaplan T; Sullivan F; Condroski K; Lyssikatos JP; Aicher TD; Ballard J; Bernat B; DeWolf W; Han M; Lemieux C; Smith D; Weiler S; Wright SK; Vigers G; Brandhuber B
    Bioorg Med Chem Lett; 2008 Jan; 18(2):509-12. PubMed ID: 18182286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of thiamine treatment in the diabetes mellitus.
    Luong KV; Nguyen LT
    J Clin Med Res; 2012 Jun; 4(3):153-60. PubMed ID: 22719800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of HIF-1α in the hypoxia inducible expression of the thiamine transporter, SLC19A3.
    Zera K; Sweet R; Zastre J
    Gene; 2016 Dec; 595(2):212-220. PubMed ID: 27743994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SLC19A3 encodes a second thiamine transporter ThTr2.
    Rajgopal A; Edmondnson A; Goldman ID; Zhao R
    Biochim Biophys Acta; 2001 Nov; 1537(3):175-8. PubMed ID: 11731220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome family.
    Baron D; Assaraf YG; Drori S; Aronheim A
    Eur J Biochem; 2003 Nov; 270(22):4469-77. PubMed ID: 14622275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Transport Mechanisms Involved in the Intestinal Absorption of Metformin: Impact on the Nonlinear Absorption Kinetics.
    Shirasaka Y; Seki M; Hatakeyama M; Kurokawa Y; Uchiyama H; Takemura M; Yasugi Y; Kishimoto H; Tamai I; Wang J; Inoue K
    J Pharm Sci; 2022 May; 111(5):1531-1541. PubMed ID: 35090865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine.
    Babaei-Jadidi R; Karachalias N; Ahmed N; Battah S; Thornalley PJ
    Diabetes; 2003 Aug; 52(8):2110-20. PubMed ID: 12882930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.
    Hammes HP; Du X; Edelstein D; Taguchi T; Matsumura T; Ju Q; Lin J; Bierhaus A; Nawroth P; Hannak D; Neumaier M; Bergfeld R; Giardino I; Brownlee M
    Nat Med; 2003 Mar; 9(3):294-9. PubMed ID: 12592403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glomerular expression of p27Kip1 in diabetic db/db mouse: role of hyperglycemia.
    Wolf G; Schroeder R; Thaiss F; Ziyadeh FN; Helmchen U; Stahl RA
    Kidney Int; 1998 Apr; 53(4):869-79. PubMed ID: 9551393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging role of thiamine therapy for prevention and treatment of early-stage diabetic nephropathy.
    Rabbani N; Thornalley PJ
    Diabetes Obes Metab; 2011 Jul; 13(7):577-83. PubMed ID: 21342411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription factor SP1 mediates hyperglycemia-induced upregulation of roundabout4 in retinal microvascular endothelial cells.
    Xie J; Gong Q; Liu X; Liu Z; Tian R; Cheng Y; Su G
    Gene; 2017 Jun; 616():31-40. PubMed ID: 28341181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency.
    Wolf G; Schanze A; Stahl RA; Shankland SJ; Amann K
    Kidney Int; 2005 Oct; 68(4):1583-9. PubMed ID: 16164635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro.
    Thornalley PJ; Jahan I; Ng R
    J Biochem; 2001 Apr; 129(4):543-9. PubMed ID: 11275553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.