BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33916506)

  • 1. Potassium-Selective Solid-Contact Electrode with High-Capacitance Hydrous Iridium Dioxide in the Transduction Layer.
    Lenar N; Piech R; Wyrwa J; Paczosa-Bator B
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33916506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The New Reliable pH Sensor Based on Hydrous Iridium Dioxide and Its Composites.
    Lenar N; Piech R; Paczosa-Bator B
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrous Cerium Dioxide-Based Materials as Solid-Contact Layers in Potassium-Selective Electrodes.
    Lenar N; Piech R; Paczosa-Bator B
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Capacity Nanocomposite Layers Based on Nanoparticles of Carbon Materials and Ruthenium Dioxide for Potassium Sensitive Electrode.
    Lenar N; Piech R; Paczosa-Bator B
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33803173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potentiometric Sensor with High Capacity Composite Composed of Ruthenium Dioxide and Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate.
    Lenar N; Piech R; Paczosa-Bator B
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Ruthenium Dioxide Solid Contact in Ion-Selective Electrodes.
    Lenar N; Paczosa-Bator B; Piech R
    Membranes (Basel); 2020 Aug; 10(8):. PubMed ID: 32784840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium dioxide nanoparticles as a high-capacity transducer in solid-contact polymer membrane-based pH-selective electrodes.
    Lenar N; Paczosa-Bator B; Piech R
    Mikrochim Acta; 2019 Nov; 186(12):777. PubMed ID: 31728640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of nanostructured TCNQ to potentiometric ion-selective K(+) and Na(+) electrodes.
    Paczosa-Bator B; Pięk M; Piech R
    Anal Chem; 2015 Feb; 87(3):1718-25. PubMed ID: 25551547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal oxide nanoparticles as solid contact in ion-selective electrodes sensitive to potassium ions.
    Pietrzak K; Krstulović N; Blažeka D; Car J; Malinowski S; Wardak C
    Talanta; 2022 Jun; 243():123335. PubMed ID: 35231717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential Stability of All-Solid-State Ion-Selective Electrodes Using Conducting Polymers as Ion-to-Electron Transducers.
    Bobacka J
    Anal Chem; 1999 Nov; 71(21):4932-7. PubMed ID: 21662838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Flakes Decorated with Dispersed Gold Nanoparticles as Nanomaterial Layer for ISEs.
    Niemiec B; Lenar N; Piech R; Skupień K; Paczosa-Bator B
    Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-solid-state potassium-selective electrode using graphene as the solid contact.
    Li F; Ye J; Zhou M; Gan S; Zhang Q; Han D; Niu L
    Analyst; 2012 Feb; 137(3):618-23. PubMed ID: 22140676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite.
    Ghosh T; Chung HJ; Rieger J
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers.
    Crespo GA; Macho S; Rius FX
    Anal Chem; 2008 Feb; 80(4):1316-22. PubMed ID: 18271511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TEMPO-Functionalized Carbon Nanotubes for Solid-Contact Ion-Selective Electrodes with Largely Improved Potential Reproducibility and Stability.
    Kozma J; Papp S; Gyurcsányi RE
    Anal Chem; 2022 Jun; 94(23):8249-8257. PubMed ID: 35622612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Carbon Nanomaterials by Association with Poly(3-octylthiophene-2,5-diyl) as a Method of Improving the Solid-Contact Layer in Ion-Selective Electrodes.
    Niemiec B; Piech R; Paczosa-Bator B
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes.
    Ampurdanés J; Crespo GA; Maroto A; Sarmentero MA; Ballester P; Rius FX
    Biosens Bioelectron; 2009 Oct; 25(2):344-9. PubMed ID: 19656669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive Polymer Nanoparticles as Solid Contact in Ion-Selective Electrodes Sensitive to Potassium Ions.
    Bao H; Ye J; Zhao X; Zhang Y
    Molecules; 2023 Apr; 28(7):. PubMed ID: 37050005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-solid-state polymeric membrane ion-selective miniaturized electrodes based on a nanoporous gold film as solid contact.
    Yin T; Pan D; Qin W
    Anal Chem; 2014 Nov; 86(22):11038-44. PubMed ID: 25322457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.
    Crespo GA; Gugsa D; Macho S; Rius FX
    Anal Bioanal Chem; 2009 Dec; 395(7):2371-6. PubMed ID: 19760402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.