These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33916717)

  • 1. Synergizing Off-Target Predictions for In Silico Insights of CENH3 Knockout in Cannabis through CRISPR/Cas.
    Hesami M; Yoosefzadeh Najafabadi M; Adamek K; Torkamaneh D; Jones AMP
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergizing CRISPR/Cas9 off-target predictions for ensemble insights and practical applications.
    Zhang S; Li X; Lin Q; Wong KC
    Bioinformatics; 2019 Apr; 35(7):1108-1115. PubMed ID: 30169558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In silico CRISPR-based sgRNA design].
    Wang Y; Chuai G; Yan J; Shi L; Liu Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1744-1756. PubMed ID: 29082722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massively parallel CRISPR off-target detection enables rapid off-target prediction model building.
    Tian R; Cao C; He D; Dong D; Sun L; Liu J; Chen Y; Wang Y; Huang Z; Li L; Jin Z; Huang Z; Xie H; Zhao T; Zhong C; Hong Y; Hu Z
    Med; 2023 Jul; 4(7):478-492.e6. PubMed ID: 37279759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPRpred: A flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/Cas9 systems.
    Rahman MK; Rahman MS
    PLoS One; 2017; 12(8):e0181943. PubMed ID: 28767689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico analysis enabling informed design for genome editing in medicinal cannabis; gene families and variant characterisation.
    Matchett-Oates L; Braich S; Spangenberg GC; Rochfort S; Cogan NOI
    PLoS One; 2021; 16(9):e0257413. PubMed ID: 34551006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR genome editing using computational approaches: A survey.
    Alipanahi R; Safari L; Khanteymoori A
    Front Bioinform; 2022; 2():1001131. PubMed ID: 36710911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking and integrating genome-wide CRISPR off-target detection and prediction.
    Yan J; Xue D; Chuai G; Gao Y; Zhang G; Liu Q
    Nucleic Acids Res; 2020 Nov; 48(20):11370-11379. PubMed ID: 33137817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic evaluation of nucleotide properties for CRISPR sgRNA design.
    Kuan PF; Powers S; He S; Li K; Zhao X; Huang B
    BMC Bioinformatics; 2017 Jun; 18(1):297. PubMed ID: 28587596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genome editing in plants directed by CRISPR/Cas ribonucleoprotein complexes].
    Li X; Shi W; Geng LZ; Xu JP
    Yi Chuan; 2020 Jun; 42(6):556-564. PubMed ID: 32694114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective use of sequence information to predict CRISPR-Cas9 off-target.
    Zhang ZR; Jiang ZR
    Comput Struct Biotechnol J; 2022; 20():650-661. PubMed ID: 35140885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system.
    Xiong X; Liu W; Jiang J; Xu L; Huang L; Cao J
    Mol Genet Genomics; 2019 Oct; 294(5):1251-1261. PubMed ID: 31129735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in the estimation of CRISPR-Cas9 cleavage sites for plant system.
    Das J; Kumar S; Mishra DC; Chaturvedi KK; Paul RK; Kairi A
    Front Genet; 2022; 13():1085332. PubMed ID: 36699447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis.
    Hesami M; Baiton A; Alizadeh M; Pepe M; Torkamaneh D; Jones AMP
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.