These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3391674)

  • 1. The antihypertensive mechanism of verapamil. Alteration of glomerular filtration rate regulation.
    Lin HB; Young DB
    Hypertension; 1988 Jun; 11(6 Pt 2):639-44. PubMed ID: 3391674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verapamil alters the relationship between renal perfusion pressure and glomerular filtration rate and renin release: the mechanism of the antihypertensive effect.
    Lin HB; Young DB
    J Cardiovasc Pharmacol; 1988; 12 Suppl 6():S57-9. PubMed ID: 2468908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of renin release and renal hemodynamics during acute and chronic verapamil administration.
    Young DB; Lin HB; LeDuff JK
    Am J Physiol; 1990 Apr; 258(4 Pt 2):F1105-9. PubMed ID: 2184671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal hemodynamic effects of calcium antagonists in rats with reduced renal mass.
    Anderson S
    Hypertension; 1991 Mar; 17(3):288-95. PubMed ID: 1999359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced renal vascular resistance in response to verapamil during gradated ureter obstruction in pigs.
    Hvistendahl JJ; Pedersen TS; Hvistendahl GM; Djurhuus JC; Frøkiaer J
    Urol Res; 2001 Oct; 29(5):350-8. PubMed ID: 11762798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trandolapril, but not verapamil nor their association, restores the physiological renal hemodynamic response to adrenergic activation in essential hypertension.
    Lambertucci L; Di Serio C; Castellani S; Torrini M; Lotti E; Cristofari C; Masotti G; Marchionni N; Ungar A
    Transl Res; 2011 Jun; 157(6):348-56. PubMed ID: 21575919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verapamil abolishes the preglomerular response to ANG II during intrarenal nitric oxide synthesis inhibition.
    Schnackenberg CG; Granger JP
    Am J Physiol; 1997 May; 272(5 Pt 2):R1670-6. PubMed ID: 9176363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intrarenal infusion of calcium entry blockers in anesthetized dogs.
    Dietz JR; Davis JO; Freeman RH; Villarreal D; Echtenkamp SF
    Hypertension; 1983; 5(4):482-8. PubMed ID: 6345359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction in renin release and renal vascular resistance by H(+)-K(+)-ATPase inhibition.
    Lin H; Young DB
    Am J Physiol; 1997 Sep; 273(3 Pt 2):F457-62. PubMed ID: 9321920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adverse effect of amphotericin B administration on renal hemodynamics in the rat. Neurohumoral mechanisms and influence of calcium channel blockade.
    Tolins JP; Raij L
    J Pharmacol Exp Ther; 1988 May; 245(2):594-9. PubMed ID: 2452876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin-converting enzyme inhibition in dogs.
    Navar LG; Champion WJ; Thomas CE
    Circ Res; 1986 Jun; 58(6):874-81. PubMed ID: 3013463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal interstitial hydrostatic pressure during verapamil-induced natriuresis.
    Granger JP; Solhaug MJ
    Am J Physiol; 1992 Mar; 262(3 Pt 2):R432-6. PubMed ID: 1558213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carvedilol on renal hemodynamics and renal excretory function in spontaneously hypertensive rats.
    Gellai M; DeWolf R; Ruffolo RR
    Pharmacology; 1990; 41(4):200-6. PubMed ID: 2080230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of verapamil on renal blood flow, renal function, and neurohormonal profiles in patients with moderate to severe hypertension.
    Kubo SH; Cody RJ; Covit AB; Feldschuh J; Laragh JH
    J Clin Hypertens; 1986 Sep; 2(3 Suppl):38S-46S. PubMed ID: 3794764
    [No Abstract]   [Full Text] [Related]  

  • 15. Renovascular responses to high and low perfusate calcium steady-state experiments in the isolated perfused rat kidney with baseline vascular tone.
    Castelli I; Steiner LA; Kaufmann MA; Drop LJ
    J Surg Res; 1996 Feb; 61(1):51-7. PubMed ID: 8769942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic responses to verapamil monotherapy in patients with renal disease.
    Lenz T; Müller FB; Sotelo JE; Laragh JH; August P
    Am J Hypertens; 1991 Dec; 4(12 Pt 1):939-43. PubMed ID: 1815650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of intracellular calcium in renal nerve-mediated renin release.
    Cadnapaphornchai P; Kellner D; McDonald FD
    Proc Soc Exp Biol Med; 1987 May; 185(1):24-30. PubMed ID: 3106984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of prostaglandins and nitric oxide in the effect of endothelin-1 on renal hemodynamics.
    Lin H; Smith MJ; Young DB
    Hypertension; 1996 Sep; 28(3):372-8. PubMed ID: 8794819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute effects of intravenous cyclosporine on blood pressure, renal hemodynamics, and urine prostaglandin production of healthy humans.
    Weir MR; Klassen DK; Shen SY; Sullivan D; Buddemeyer EU; Handwerger BS
    Transplantation; 1990 Jan; 49(1):41-7. PubMed ID: 2301025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal protection in essential hypertension: how do angiotensin-converting enzyme inhibitors compare with calcium antagonists?
    Bauer JH; Reams GP
    J Am Soc Nephrol; 1990 Nov; 1(5 Suppl 2):S80-7. PubMed ID: 16989071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.